On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Integral de Riemann-Stieltjes - Viquipèdia

Integral de Riemann-Stieltjes

De Viquipèdia

En matemàtiques, la integral de Riemann-Stieltjes és una generalització de la integral de Riemann, s'anomena així en honor de Bernhard Riemann i de Thomas Joannes Stieltjes.

Taula de continguts

[edita] Definició

La integral de Riemann-Stieltjes d'una funció real f d'una variable real respecte d'una funció real g s'escriu

\int_a^b f(x) \, dg(x)

I es defineix com el límit del segënt sumatori, quant la mida de cada una de les parts de la partició P de l'interval [a, b] tendeix a zero

\sum_{x_i\in P} f(c_i)(g(x_{i+1})-g(x_i))

on ci és el i-èssim subinterval [xi, xi+1]. De les dues funcions f i g se'n diu respectivament l'integrand i l'integrador. Habitualment, g és no decreixent, però això no és necessari. Per que aquesta integral de Riemann-Stieltjes existeixi cal que f i g no comparteixin cap punt de discontinuïtat.

Una definició alternativa, i lleugerament més general, de la integral de Riemann-Stieltjes fa servir el mateix sumatori d'aproximació de més amunt, però pren el límit de forma que sigui un limit de Moore-Smith directament sobre el conjunt de particions de [a, b]. Es a dir, pren el límit a mesura que s'insereixen més i més punts de divisió en la partició. Amb aquesta definició, una integral pot existir quan f i g comparteixen punts de discontinuïtat, sempre i quant no siguin discontínues des de el mateix cantó al mateix punt.

Per un altre formulació de la integral que és molt més general, vegeu la integral de Lebesgue. Cal remarcar, però, que si s'admeten les integrals impròpies de Riemann-Stieltjes, llavors la integral de Lebesgue no és estrictament més general.

[edita] Propietats i relació amb la integral de Riemann

Encara que g fos derivable a tot arreu encara podria ser que la integral fos diferent de la integral de Riemann

\int_a^b f(x) g'(x) \, dx,

per exemple, si la derivada no és afitada. Pero si la derivada és contínua, llavors seràn la mateixa. Aquesta condició també es satisfà si g és la integral (de Lebesgue) de la seva derivada; en aquest cas es diu que g és absolutament contínua.

En canvi, g pot tenir discontinuïtats de salt, o la seva derivada pot ser zero quasi per a tot i continuar sent contínua i creixent (per exemple, g pot ser la funció de Cantor o la Funció signe d'interrogació), en cap dels dos cassos la integral de Riemann-Stieltjes no es pot obtenir amb cap expressió que impliqui derivades de g.

La integral de Riemann-Stieltjes admet integració per parts de la forma

\int_a^b f(x) \, dg(x)=f(b)g(b)-f(a)g(a)-\int_a^b g(x) \, df(x).

i l'existència de la integral de la esquerra implica l'existència de la integral de la dreta.

[edita] Existència de la integral

El teorema d'existència més senzill, estableix que si f és contínua i g és de variació afitada en [a, b], llavors la integral existeix. Fixeu-vos que g és de variació afitada si i només si és la diferència entre dues funcions monòtones. Si g no és de variació afitada, llavors hi haurà funcions contínues que no podran ser integrades respecte de g.

[edita] Aplicacions a la teoria de la probabilitat

Si g és la funció de distribució de probabilitat d'una variable aleatòria X que té una Funció de densitat de probabilitat respecte de la mesura de Lebesgue, i f és qualsevol funció per a la qual la esperança matemàtica E(|f(X)|) és finita, llavors, la funció densitat de probabilitat de X és la derivada de g i es té

E(f(X))=\int_{-\infty}^\infty f(x)g'(x)\, dx.

Però aquesta fórmula no funciona si X no té una funció densitat de probabilitat respecte de la mesura de Lebesgue. En particular, no funciona si la distribució de X és discreta (es a dir, tota la probabilitat es concentra en masses puntuals), i fins i tot si la funció de distribució de probabilitat g és contínua, no funciona si g no és absolutament contínua (altre cop, la funció de Cantor pot servir com un exemple d'aquest problema). Però la identitat

E(f(X))=\int_{-\infty}^\infty f(x)\, dg(x)

Es manté si g és qualsevol funció distribució de probabilitat de la recta real.

[edita] Aplicacions a l'anàlisi funcional

La integral de Riemann-Stieltjes apareix a la formulació original del teorema de F. Riesz que representa l'espai dual de l'espai de Banach C[a,b] de les funcions contínues en un interval [a,b] com a integrals de Riemann-Stieltjes respecte de funcions de variació afitada (mes tard, el teorema es va reformular en termes de mesures).

La integral de Riemann-Stieltjes, també apareix en la formulació del teorema espectral per operadors (no compactes) auto adjunts (o més generalment, normals) en un espai de Hilbert (en aquest teorema la integral es considera respecte de una, així anomenada, família espectral de projeccions).

[vegeu el llibre de en F. Riesz per a més detalls]

[edita] Vegeu també

[edita] Referències

  • Shilov, G. E., and Gurevich, B. L., 1978. Integral, Measure, and Derivative: A Unified Approach, Richard A. Silverman, trans. Dover Publications. ISBN 0-486-63519-8. Emfatitza la Integral de Daniell.
  • Stroock, Daniel W., 1998. A Concise Introduction to the Theory of Integration. Birkhauser. 3 edition. ISBN 0-8176-4073-8. Inclou problemes amb solucions.
  • F. Riesz, B. Sz. Nagy. Functional Analysis. (1955) F. Ungar Publishing.


Static Wikipedia March 2008 on valeriodistefano.com

aa   ab   af   ak   als   am   an   ang   ar   arc   as   ast   av   ay   az   ba   bar   bat_smg   bcl   be   be_x_old   bg   bh   bi   bm   bn   bo   bpy   br   bs   bug   bxr   ca   cbk_zam   cdo   ce   ceb   ch   cho   chr   chy   co   cr   crh   cs   csb   cv   cy   da   en   eo   es   et   eu   fa   ff   fi   fiu_vro   fj   fo   fr   frp   fur   fy   ga   gd   gl   glk   gn   got   gu   gv   ha   hak   haw   he   hi   ho   hr   hsb   ht   hu   hy   hz   ia   id   ie   ig   ii   ik   ilo   io   is   it   iu   ja   jbo   jv   ka   kab   kg   ki   kj   kk   kl   km   kn   ko   kr   ks   ksh   ku   kv   kw   ky   la   lad   lb   lbe   lg   li   lij   lmo   ln   lo   lt   lv   map_bms   mg   mh   mi   mk   ml   mn   mo   mr   ms   mt   mus   my   mzn   na   nah   nap   nds   nds_nl   ne   new   ng   nl   nn   nov  

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu