On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Mètode de Romberg - Viquipèdia

Mètode de Romberg

De Viquipèdia

En càlcul numèric, el mètode de Romberg (Romberg 1955) genera una taula triangular que consisteix en estimacions numèriques de la integral definida

 \int_a^b f(x) \, dx

A base d’utilitzar la extrapolació de Richardson (Richardson 1910) repetidament sobre el el mètode trapezial. El mètode de Romberg avalua l’integrand a punts equidistants. L’integrand ha de tenir derivades contínues tot i que es poden obtenir força bons resultats encara que només existeixin unes quantes derivades. Si és posible avaluar l’integrand en punts desigualment espaiats, llavors altres mètodes com la quadratura de Gauss i la quadratura de Clenshaw-Curtis són, en general, més exactes.

Taula de continguts

[edita] Mètode

El mètode es pot definir per inducció així:

R(0,0) = \frac{1}{2} (b-a) (f(a) + f(b))
R(n,0) = \frac{1}{2} R(n-1,0) + h_n \sum_{k=1}^{2^{n-1}} f(a + (2k-1)h_n)
R(n,m) = R(n,m-1) + \frac{1}{4^m-1} (R(n,m-1) - R(n-1,m-1))

o

R(n,m) = \frac{1}{4^m-1} ( 4^m R(n,m-1) - R(n-1,m-1))

on

 n \ge 1
 m \ge 1
 h_n = \frac{b-a}{2^n}.

En notació de Landau, l’error de R(n,m) és:

 O\left(h_n^{2^{m+1}}\right).

La primera extrapolació, R(n,1), és equivalent al mètode de Simpson amb n + 2 points.

Quan les avaluacions de la funció són costoses en termes computacionals, pot ser preferible substituir la interpolació polinòmica de Richardson per la interpolació racional proposada per Plantilla:Harvtxt.

[edita] Implementació del mètode de Romberg en Pyton

Aquesta és una implementació del mètode de Romberg en Python.

def imprimeix_fila(lst):
    print ' '.join('%11.8f' % x for x in lst)
 
def romberg(f, a, b, eps = 1E-8):
    """Approxima la integral definida de f des de a fins a b pel mètode de Romberg.
    eps és la precisió desitjada."""
    R = [[0.5 * (b - a) * (f(a) + f(b))]]  # R[0][0]
    Imprimeix_fila(R[0])
    n = 1
    while True:
        h = float(b-a)/2**n
        R.append((n+1)*[None])  # Afegeix una fila buida.
        R[n][0] = 0.5*R[n-1][0] + h*sum(f(a+(2*k-1)*h) for k in range(1, 2**(n-1)+1)) # per limits adequats
        for m in range(1, n+1):
            R[n][m] = R[n][m-1] + (R[n][m-1] - R[n-1][m-1]) / (4**m - 1)
        Imprimeix_fila(R[n])
        if abs(R[n][n-1] - R[n][n]) < eps:
            return R[n][n]
        n += 1
 
from math import *
 
# En aquest exemple s’avalua la funció error erf(1).
print romberg(lambda t: 2/sqrt(pi)*exp(-t*t), 0, 1)

[edita] Exemple

Com a exemple s’intega la funció de Gauss des de 0 fins a 1, es a dir la funció error {\rm erf}(1)\doteq 0.842700792949715. La taula triangular es calcula file per fila i el càlcul s’acaba si els dos útims nombres de la última fila defereixen menys de 1E-8.

 0.77174333
 0.82526296  0.84310283
 0.83836778  0.84273605  0.84271160
 0.84161922  0.84270304  0.84270083  0.84270066
 0.84243051  0.84270093  0.84270079  0.84270079  0.84270079

El resultat de la cantonada de baix a la dreta de la taula triangular és exacte en tots els dígits que es presenten. És notable que aquest resultat s’ha obtingut a partir de les menys exactes aproximacions obtingudes pel mètode trapezial de la primera columna de la taula triangular.

[edita] Referències

[edita] Enllaços externs


Static Wikipedia March 2008 on valeriodistefano.com

aa   ab   af   ak   als   am   an   ang   ar   arc   as   ast   av   ay   az   ba   bar   bat_smg   bcl   be   be_x_old   bg   bh   bi   bm   bn   bo   bpy   br   bs   bug   bxr   ca   cbk_zam   cdo   ce   ceb   ch   cho   chr   chy   co   cr   crh   cs   csb   cv   cy   da   en   eo   es   et   eu   fa   ff   fi   fiu_vro   fj   fo   fr   frp   fur   fy   ga   gd   gl   glk   gn   got   gu   gv   ha   hak   haw   he   hi   ho   hr   hsb   ht   hu   hy   hz   ia   id   ie   ig   ii   ik   ilo   io   is   it   iu   ja   jbo   jv   ka   kab   kg   ki   kj   kk   kl   km   kn   ko   kr   ks   ksh   ku   kv   kw   ky   la   lad   lb   lbe   lg   li   lij   lmo   ln   lo   lt   lv   map_bms   mg   mh   mi   mk   ml   mn   mo   mr   ms   mt   mus   my   mzn   na   nah   nap   nds   nds_nl   ne   new   ng   nl   nn   nov  

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu