Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Unité de mesure

Unité de mesure

Page d'aide sur l'homonymie Pour les articles homonymes, voir Unité.
Cet article ne cite pas suffisamment ses sources (juillet 2012).
Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » (modifier l'article, comment ajouter mes sources ?).

En physique et en métrologie, une unité de mesure est un étalon nécessaire pour la mesure d'une grandeur physique.

Les systèmes d'unités, définis en cherchant le plus large accord dans le domaine considéré, sont rendus nécessaires par la méthode scientifique dont un des fondements est la reproductibilité des expériences (donc des mesures), ainsi que par le développement des échanges d'informations commerciales ou industrielles.

Différents systèmes d'unités sont basés sur des choix différents du jeu d'unités fondamentales, mais de nos jours, le système d'unités le plus utilisé est le système international d'unités (SI), dans lequel il y a sept unités de base. Toutes les autres unités rattachés au SI peuvent être dérivées de ces unités de base.

Principe et symboles des noms d'unités

Par convention, les noms d'unités sont des noms communs qui s'écrivent en minuscules (« kelvin » et non « Kelvin », « ampère » et non « Ampère »), même s'ils dérivent de noms propres de savants ; ces noms d'unités prennent la marque du pluriel (exemple : un volt, deux volts).

Par contre, le symbole commence par une majuscule si le nom dérive de celui d'une personne (exemples : « V » pour volt / Alessandro Volta, « A » pour ampère / André-Marie Ampère, « Pa » pour pascal / Blaise Pascal) ; sinon le symbole commence par une minuscule (exemples : « m » pour mètre, « s » pour seconde).

Selon la règle, l'écriture correcte du nom de l'unité dont le symbole est °C est « degré Celsius » (l'unité degré commence par la lettre d en minuscule et le qualificatif « Celsius » commence par la lettre C en majuscule, parce que c'est un nom propre). Les caractères ° et C sont indissociables. Cependant, la majuscule « L », pour litre, fut adoptée par la Conférence générale des poids et mesures, comme alternative en raison du risque de confusion entre le « l » minuscule et le chiffre « 1 »[1].

Unités du système international

Unités de base du SI

Article détaillé : Unités de base du système international.
Tableau des grandeurs physiques de base du SI avec leurs dimensions, unités et symboles
Grandeur physique Symbole
de la grandeur
Symbole
de la dimension
Nom
de
l'unité
Symbole
de
l'unité
Description
longueur l, x, r… L mètre m Le mètre est la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299 792 458 seconde (17e CGPM (1983), Résolution 1, CR 97).
Historiquement, la première définition officielle et pratique du mètre (1791) était basée sur la circonférence de la Terre, et valait 1/40 000 000 d'un méridien.
Auparavant, le mètre fut proposé en tant qu'unité universelle de mesure comme la longueur d'un pendule qui oscille avec une demi-période d'une seconde (John Wilkins (1668) puis Tito Livio Burattini (1675).
masse m M kilogramme kg Le kilogramme (nom originel, le grave) est l'unité de masse. Il est égal à la masse du prototype international du kilogramme. Ce dernier, en platine-iridium (90 % - 10 %), est gardé au Bureau international des poids et mesures à Sèvres, en France (1re CGPM (1889), CR 34-38).
Historiquement, c'est la masse d'un décimètre cube d'eau, soit un litre, à 4 °C.
temps, durée t T seconde s La seconde est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de césium 133 à une température de 0 K (13e CGPM (1967-1968), Résolution 1, CR 103).
courant électrique I, i I ampère A L'ampère est l'intensité d'un courant constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placés à une distance d'un mètre l'un de l'autre dans le vide produirait entre ces conducteurs une force égale à 2×10-7 newton par mètre de longueur (9e CGPM (1948), Résolution 7, CR 70).
température thermodynamique T Θ (thêta) kelvin K Le kelvin, unité de température thermodynamique, est la fraction 1/273,16 de la température thermodynamique du point triple de l'eau (13e CGPM (1967), Résolution 4, CR 104)
Cette définition fait du kelvin une mesure de température égale en variation à celle du degré Celsius, mais basée sur le zéro absolu.
quantité de matière n N mole mol La mole est la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 0,012 kilogramme de carbone 12 (14e CGPM (1971), Résolution 3, CR 78).
Ce nombre est appelé nombre d'Avogadro. Lorsque l'on emploie la mole, les entités élémentaires doivent être spécifiées et peuvent être des atomes, des molécules, des ions, des électrons, d'autres particules ou des groupements spécifiés de telles particules.
intensité lumineuse IV J candela cd La candela est l'intensité lumineuse, dans une direction donnée, d'une source qui émet un rayonnement monochromatique de fréquence 540×1012 hertz et dont l'intensité énergétique dans cette direction est de 1/683 watt par stéradian (16e CGPM (1979) Résolution 3, CR 100).

Unités dérivées du SI

Article détaillé : Unités dérivées du système international.

Les colonnes « M - L - T - I - Θ (thêta) - N - J » précisent les « facteurs dimensionnels » des grandeurs dérivées, correspondant aux « expressions » dans les unités de base du système international « kg - m - s - A - K - mol - cd » .

Tableau des grandeurs physiques dérivées du SI avec leurs dimensions, unités et symboles
Grandeur physique Nom
de
l'unité
Symbole
de
l'unité
Expression M L T I Θ N J Relation
Fréquence hertz Hz s-1 -1 Fréquence = 1 / période
Force newton N kg ⋅ m ⋅ s-2 1 1 -2 Force = masse × accélération
Pression et contrainte pascal Pa N ⋅ m-2, J ⋅ m-3 1 -1 -2 Pression = force / surface
Travail, énergie et quantité de chaleur joule J N ⋅ m 1 2 -2 Travail = force × distance ; énergie cinétique = masse × vitesse2 / 2
Puissance, flux énergétique et flux thermique watt W J ⋅ s-1 1 2 -3 Puissance = travail / temps
Charge électrique et quantité d'électricité coulomb C A ⋅ s 1 1 Charge = courant × temps
Force électromotrice et différence de potentiel (ou tension) volt V J ⋅ C-1 ou J ⋅ s-1 ⋅ A-1 1 2 -3 -1 Tension = travail / charge
Résistance électrique ohm Ω V ⋅ A-1 1 2 -3 -2 Résistance = tension / courant
Conductance électrique siemens S A ⋅ V-1 ou Ω-1 -1 -2 3 2 Conductance = courant / tension
Capacité électrique farad F C ⋅ V-1 -1 -2 4 2 Capacité = charge / tension
Induction magnétique tesla T V ⋅ s ⋅ m-2 1 -2 -1 Induction = tension × temps / surface
Flux d'induction magnétique weber Wb V ⋅ s 1 2 -2 -1 Flux d'induction = tension × temps
Inductance électrique henry H V ⋅ s ⋅ A-1 1 2 -2 -2 Inductance = tension × temps / courant
Température Celsius degré Celsius °C K - 273,15 1
Angle plan radian rad 0
Angle solide stéradian sr 0
Flux lumineux lumen lm cd ⋅ sr 1
Éclairement lumineux lux lx cd ⋅ sr ⋅ m-2 -2 1
Activité (radioactive) becquerel Bq s-1 -1
Dose radioactive et kerma gray Gy J ⋅ kg-1 2 -2
Dose équivalente et dose efficace sievert Sv J ⋅ kg-1 2 -2
Activité catalytique katal kat mol ⋅ s-1 -1 1
Superficie mètre carré m2 2
Volume mètre cube m3 3
Vitesse mètre par seconde m ⋅ s-1 1 -1
Vitesse angulaire radian par seconde rad ⋅ s-1 -1
Accélération mètre par seconde carrée m ⋅ s-2 1 -2
Accélération angulaire radian par seconde carrée rad ⋅ s-2 -2
Moment d'une force newton-mètre N ⋅ m 1 2 -2
Nombre d'onde mètre à la puissance moins un m-1 -1
Masse volumique kilogramme par mètre cube kg ⋅ m-3 1 -3
Masse linéique kilogramme par mètre kg ⋅ m-1 1 -1
Volume massique mètre cube par kilogramme m3 ⋅ kg-1 -1 3
Concentration molaire mole par mètre cube mol ⋅ m-3 -3 1
Volume molaire mètre cube par mole m3 ⋅ mol-1 3 -1
Capacité thermique et entropie joule par kelvin J ⋅ K-1 1 2 -2 -1 kg ⋅ m2 ⋅ K-1 ⋅ s-2
Capacité thermique molaire et entropie molaire joule par mole-kelvin J ⋅ mol-1 ⋅ K-1 1 2 -2 -1 -1 kg ⋅ m2 ⋅ mol-1 ⋅ K-1 ⋅ s-2
Capacité thermique massique et entropie massique joule par kilogramme-kelvin J ⋅ kg-1 ⋅ K-1 2 -2 -1 m2 ⋅ K-1 ⋅ s-2
Énergie molaire joule par mole J ⋅ mol-1 1 2 -2 -1 kg ⋅ m2 ⋅ mol-1 ⋅ s-2
Énergie massique joule par kilogramme J ⋅ kg-1 0 2 -2 m2 ⋅ s-2
Énergie volumique joule par mètre cube J ⋅ m-3 1 -1 -2 kg ⋅ m-1 ⋅ s-2
Tension capillaire newton par mètre N ⋅ m-1 1 -2 kg ⋅ s-2
Flux thermique watt par mètre carré W ⋅ m-2 1 -3 kg ⋅ s-3
Conductivité thermique watt par mètre-kelvin W ⋅ m-1 ⋅ K-1 1 1 -3 -1 m ⋅ kg ⋅ K-1 ⋅ s-3
Viscosité cinématique mètre carré par seconde m2 ⋅ s-1 2 -1
Viscosité dynamique pascal-seconde Pa ⋅ s 1 -1 -1 kg ⋅ m-1 ⋅ s-1
Densité de charge électrique coulomb par mètre cube C ⋅ m-3 -3 1 1 A ⋅ s ⋅ m-3
Densité de courant ampère par mètre carré A ⋅ m-2 -2 1
Conductivité électrique siemens par mètre S ⋅ m-1 -1 -3 3 2 A2 ⋅ s3 ⋅ kg-1 ⋅ m-3
Conductivité molaire siemens mètre carré par mole S ⋅ m2 ⋅ mol-1 -1 3 2 -1 A2 ⋅ s3 ⋅ kg-1 ⋅ mol-1
Permittivité farad par mètre F ⋅ m-1 -1 -3 4 2 A2 ⋅ s4 ⋅ kg-1 ⋅ m-3
Perméabilité magnétique henry par mètre H ⋅ m-1 1 1 -2 -2 m ⋅ kg ⋅ s-2 ⋅ A-2
Intensité de champ électrique volt par mètre V ⋅ m-1 1 1 -3 -1 m ⋅ kg ⋅ A-1 ⋅ s-3
Intensité de champ magnétique ampère par mètre A ⋅ m-1 -1 1
Luminance candela par mètre carré cd ⋅ m-2 -2 1
Exposition (rayons X et rayon gamma) coulomb par kilogramme C ⋅ kg-1 -1 1 1 A ⋅ s ⋅ kg-1
Débit de dose radioactive gray par seconde Gy ⋅ s-1 2 -3 m2 ⋅ s-3
Débit massique kilogramme par seconde kg ⋅ s-1 1 -1
Débit volumique mètre cube par seconde m3 ⋅ s-1 3 -1

Unités homogènes

Les unités de chaque grandeur physique doivent être « homogènes »[pas clair].

Le tableau ci-dessous donne un rappel de conversion de grandeur physique (mécanique) composite, en fonction de l’expression de la longueur (L), du temps (T) et de la masse (M).

Expression de grandeurs composite en fonction de la masse, du temps et de la longueur
longueur temps masse force pression vitesse masse volumique énergie
L T M M ⋅ L ⋅ T-2 M ⋅ T-2 ⋅ L-1 L ⋅ T-1 M ⋅ L-3 M ⋅ L2 ⋅ T-2
m s kg kg ⋅ m ⋅ s-2 N ⋅ m-2 [kg ⋅ m-1 ⋅ s-2] m ⋅ s-1 kg ⋅ m-3 kg ⋅ m2 ⋅ s-2
m s 103 g N Pa m ⋅ s-1 103 g ⋅ m-3 J
mètre seconde 103 grammes newton pascal mètre par seconde 103 grammes par mètre cube joule

Unités hors du système international d'unités

Avant l'adoption du système international d'unités (cf.infra), d'autres systèmes d'unités ont été utilisés à des fins variées, par exemple :

  • le système d'unités CGS (centimètre-gramme-seconde) ;
  • le système MTS (mètre-tonne-seconde) ;
  • le système MKSA (mètre, kilogramme, seconde, ampère), l’ancêtre du système international actuel ;
  • le système d'unités de Planck et les unités naturelles ;
  • les systèmes d'unités de mesure anglo-saxonnes ;
  • le système d'unités géométriques.

Certains pays ou professions, par tradition culturelle ou de corporation, continuent à utiliser tout ou partie d'anciens systèmes d'unités.

Unités traditionnelles non standard

Des unités non standards sont encore en usage au sein de professions particulières.

  • Le morgan et le centimorgan sont des unités de calcul de fréquence de recombinaison en génétique.
  • Le curie (symbole Ci) est une ancienne unité de radioactivité, équivalant approximativement à l'activité de 1 g de l'isotope du radium 226Ra .
  • La verste (versta, верста en russe) est une ancienne unité de mesure russe, équivalent à 500 sajènes (саженьe), soit 3 500 pieds anglais ou 1,0668 kilomètres.
  • Le quintal est une unité de masse qui n'est pratiquement plus usitée (à l'oral dans le Nord de la France), un quintal équivaut à 100 kilogrammes.
  • Le carat, le zolotnik, dans l'industrie de la joaillerie et des pierres précieuses.

Unités sans dimension

Elles sont obtenues en faisant le rapport de deux grandeurs de même dimension :

  • radian et stéradian, respectivement unité d'angle plan et unité d'angle solide ;
  • bel, unité d'amplification et de niveau sonore dont on utilise surtout le sous-multiple décibel.

Signification des systèmes d'unités

Autrefois, les unités de poids et de longueur étaient fondées soit sur un objet concret appelé étalon (partie du corps humain ou objet comme une perche), soit sur un usage particulier, soit sur une action qui permettait de mesurer.

En conséquence, les mesures avec ce type de systèmes sont variables (nous n'avons pas tous le même « pied »). C'est pourquoi, le Système international (SI) a adopté des définitions d'unités en fonction de paramètres invariables, ou prétendus tels.

Aujourd'hui, parmi les unités de base du SI, seul le kilogramme est encore défini en relation avec un objet matériel (l'étalon du Bureau international des poids et mesures, donc susceptible de s'altérer.

De nouvelles définitions du système international d'unités tentent de lui trouver une description plus universelle et stable.

Étalons issus de parties du corps humain

Unités de longueurs (en cm)

  • Pied : 30,48 cm (mesure actuelle définie par rapport au Système international d'unités)
  • Pouce : 2,54 cm (mesure actuelle définie par rapport au Système international d'unités)
  • Paume : dans la largeur ou la longueur
  • Verge ou yard : 91,44 cm (mesure actuelle définie par rapport au Système international d'unités)
  • Coudée : du coude au bout des doigts
  • Brassée ou brasse : longueur mesurée d'une main à l'autre, en passant par les épaules, bras

Étalons issus d'objets usuels

Unités de longueur

  • Perche
La perche était la mesure employée par les arpenteurs.
La perche ordinaire valait 20 pieds soit 6,496 m
  • Grain (poids et longueur)
  • Encablure
  • Lieue

Unités de poids

  • Tonne : du gaulois tunna, peau de bête, dont on faisait des outres, et dont le sens est passé à barrique

Étalons issus d'actions

Unités de longueur

  • Pas : distance parcourue en une enjambée
  • Mille marin (appelé abusivement mille nautique de la traduction de l'anglais nautical mile) correspondait initialement à la distance d'une minute d'arc sur un parallèle à la latitude de 45°. En 1929, la valeur du mille a été définie en se basant sur une circonférence moyenne de la Terre de 40 000 km, soit 1 851,85 m, valeur arrondie à 1 852 m (les Britanniques comptent 1 853,184 m).

Unités de surface

  • Journal : surface que l'on labourait en une journée.
  • Sétérée : surface que l'on ensemençait avec un setier de grains.

Unités de vitesse

  • Le nœud (de nodus en latin) est une unité de mesure de la vitesse, utilisée par les transports maritimes et aériens. Un nœud correspond à un mille marin (1 852 m) à l'heure.
Il se mesurait en laissant se dérouler une corde à nœuds (un tous les 1/120 de mille, soit 15,43 m) derrière le navire pendant trente secondes ; chaque nœud compté (filé entre les doigts) donne un nœud de vitesse. L'ensemble corde et planchette qui sert d'ancre flottante s'appelle « loch à bateau ».

Étalons issus d'usages

Unités de volume

  • Tonneau : pour les navires : 2,83 m3
  • Galopin : initialement, la quantité de vin bu en un repas ; actuellement, 12 cl de bière, ou un demi-ballon de vin.
  • Picotin : quantité d'avoine donnée à un cheval (environ 3 litres)

Conversion d'unités

Article détaillé : Conversion des unités.

Préfixes du système international

Article détaillé : Préfixe du système international.

Calculs au moyen d'unités

Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue !

Exprimer une valeur physique dans une autre unité

Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue !

Notes et références

  1. Résolution 6 de la 16e Conférence générale des poids et mesures (CGPM), 1979)

Voir aussi

Articles connexes

Liens externes

  • Tout sur les unités de mesures
  • (en) Latest (2010) values of the constants, sur le site physics.nist.gov
  • Conventions arithmétiques pour la conversion entre les mesures romaines (i.e. ottomanes) et égyptiennes (Manuscrit de 1642)
  • Conversion en ligne des unités de mesure
  • Portail de la physique
This article is issued from Wikipédia - version of the Friday, October 16, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011