On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Quasigruppo - Wikipedia

Quasigruppo

Da Wikipedia, l'enciclopedia libera.

In algebra astratta, un quasigruppo è una struttura algebrica "assomigliante" a un gruppo. Formalmente, un quasigruppo è un magma dove è sempre definita l'operazione di "divisione".

I quasigruppi differiscono dai gruppi principalmente per il fatto che non sono necessariamente associativi.

Indice

[modifica] Definizioni

Un quasigruppo è un magma (Q, *), dove Q è un insieme, * una operazione binaria ^* : Q \times Q \to Q, tale che per ogni a, b in Q esiste un unico elemento x e un unico elemento y tali che:

  • a * x = b
  • y * a = b

Le uniche soluzioni di queste equazioni sono di sovente scritte come

  • x = a \ b
  • y = b / a.

Gli operatori \ e / sono denominati rispettivamente di divisione destra e divisione sinistra. Per semplicità assumeremo un quasigruppo non vuoto.

Un loop è un quasigruppo con un elemento neutro. Da qui segue che ogni elemento del loop ha un suo unico inverso sinistro e un suo unico inverso destro, che si dimostra essere coincidenti.

Un loop di Moufang (o Moufang loop) (da Ruth Moufang) è un quasigruppo (L, *) soddisfacente le condizioni:

(a*b)*(c*a) = (a*(b*c))*a per ogni a, b, c in L.

[modifica] Esempi

  • Qualsiasi gruppo è un quasigruppo, in quanto a * x = b sse x = a − 1 * b, e y * a = b sse y = b * a − 1. Poiché i gruppi sono associativi, essi sono anche Moufang loops.
  • L'insieme Z degli interi con l'operatore di sottrazione (−) forma un quasigruppo.
  • L'insieme dei numeri razionali non nulli, \mathbb{Q} \setminus \{0\} (o dei reali estesi \R \cup \{\infty\}) dotati dell'operazione di divisione (÷) formano un quasigruppo.
  • L'insieme \{\pm 1, \pm i, \pm j, \pm k\} dove ii = jj = kk = +1 (e tutti gli altri prodotti come nei quaternioni) forma un quasigruppo o un loop o un quadrato latino.
  • Ogni triplo sistema di Steiner è un quasigruppo idempotente e commutativo.
  • Un insieme di ottonioni non nulli forma un Moufang loop rispetto alla moltiplicazione.
    • Il sottoinsieme di ottonioni unitari (i.e quelli con norma 1) sono chiusi rispetto alla moltiplicazione e dunque generano una 7-sfera con struttura di un Moufang loop.

[modifica] Proprietà

[modifica] Proprietà di cancellazione

Da notare che un quasigruppo ha una proprietà di cancellazione:

Se a * b = a * c, allora b = c.

Questo perché x = b è certamente una soluzione dell'equazione a * b = a * x e le soluzioni devono essere uniche.

Similarmente, Se a * b = c * b, allora a = c.

[modifica] Quadrato latino

La tavola pitagorica di un quasigruppo finito è un quadrato latino: Un quadrato Latino di ordine n è ogni matrice quadrata di aspetto n × n le cui entrate costituiscono un insieme di n elementi tale che ciascuno di essi compare esattamente una volta in ogni riga e una volta in ogni colonna della matrice. Inversamente, ogni quadrato latino può rappresentare la tavola pitagorica di un quasigruppo.

[modifica] Moufang Loops

Facilmente si pensa che i Moufang loops sono dei loops, ma non è detto che essi abbiano un unico elemento neutro: sia a un elemento di M e sia e un elemento tale che a * e = a. Dunque per ogni x in Q, segue (x * a) * x = (x * (a * e)) * x = (x * a) * (e * x) e dalla proprietà di cancellazione, x = e * x. Così e è un elemento identitario sinistro.

Sia ora b un elemento tale che b * e = e. Allora per ogni y appartenente a M y * b = e * (y * b), dove e è un identitario sinistro, dunque (y * b) * e = (e * (y * b)) * e = (e * y) * (b * e) = (e * y) * e = y * e e dalla proprietà di cancellazione y * b = y, così e è un identitario destro.

Infine e = e * b = b, così e è un identitario, o elemento unitario.

[modifica] Quasigruppi e Loop associativi

Ogni quasigruppo associativo può essere un Moufang loop. Un loop associativo può banalmente essere un gruppo. Questo in quanto i gruppi sono per la precisione dei quasigruppi associativi. La teoria strutturale dei loops è pressoché analoga a quella dei gruppi.

Sebbene i Moufang loops non siano generamente associativi, soddisfano tuttavia una forma debole di associatività. Si può dimostrare che, definita una identità di Moufang (moltiplicazione denotata come giustapposizione)

(ab)(ca) = (a(bc))a

ciascuna delle seguenti è equivalente:

a(b(ac)) = ((ab)a)c
a(b(cb)) = ((ab)c)b

Queste 3 equazioni sono denominate identità di Moufang. Ognuna di esse può servire a definire un Moufang loop.

Se assegno vari elementi a un'identitario e, si può dimostrare che queste relazioni implicano:

a(ab) = (aa)b
(ab)b = a(bb)
a(ba) = (ab)a

Dunque tutti i Moufang loops sono alternativi. Moufang ha dimostrato inoltre che il subloop generato da uno dei due elementi del Moufang loop è associativo (e dunque è un gruppo). In particolare, i Moufang loops manifestano la associatività della potenza.

Quando si lavora con i Moufang loops, è uso comune non usare le parentesi in espressioni con solo due elementi distinti.

[modifica] Voci correlate

[modifica] Bibliografia

  • J.D.H. Smith and Anna B. Romanowska (1999) Post-Modern Algebra, Wiley-Interscience ISBN 0471127388.


Static Wikipedia March 2008 on valeriodistefano.com

aa   ab   af   ak   als   am   an   ang   ar   arc   as   ast   av   ay   az   ba   bar   bat_smg   bcl   be   be_x_old   bg   bh   bi   bm   bn   bo   bpy   br   bs   bug   bxr   ca   cbk_zam   cdo   ce   ceb   ch   cho   chr   chy   co   cr   crh   cs   csb   cv   cy   da   en   eo   es   et   eu   fa   ff   fi   fiu_vro   fj   fo   fr   frp   fur   fy   ga   gd   gl   glk   gn   got   gu   gv   ha   hak   haw   he   hi   ho   hr   hsb   ht   hu   hy   hz   ia   id   ie   ig   ii   ik   ilo   io   is   it   iu   ja   jbo   jv   ka   kab   kg   ki   kj   kk   kl   km   kn   ko   kr   ks   ksh   ku   kv   kw   ky   la   lad   lb   lbe   lg   li   lij   lmo   ln   lo   lt   lv   map_bms   mg   mh   mi   mk   ml   mn   mo   mr   ms   mt   mus   my   mzn   na   nah   nap   nds   nds_nl   ne   new   ng   nl   nn   nov  

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu