[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]

Transformador - Viquipèdia

Transformador

De Viquipèdia

Un transformador sobre un pal elèctric
Un transformador sobre un pal elèctric
Alguns transformadors de mida petita
Alguns transformadors de mida petita
Imatge d'un gran transformador
Imatge d'un gran transformador

Un transformador és una màquina elèctrica estàtica (sense parts en moviment) d'inducció electromagnètica que permet convertir els valors de tensió i d'intensitat de corrent subministrat per una font de corrent altern en un o més sistemes de corrent altern amb valors de tensió i intensitat de corrent diferents però de la mateixa freqüència. En resum, els transformadors són uns aparells que converteixen energia elèctrica d'unes característiques en energia elèctrica amb d'altres característiques, essent una de les màquines elèctriques més eficients que existeixen.

Un transformador acostuma a constar de tres parts:

  • Un nucli de material ferromagnètic que forma un circuit magnètic tancat.
  • Un enrotllament o debanament primari al qual s'aplica un corrent elèctric.
  • Un enrotllament o debanament secundari que proporcionarà un corrent elèctric de sortida. En alguns casos pot haver més d'un secundari.

El corrent altern aplicat al primer circuit, el primari, crea un camp magnètic variable; aquest camp magnètic indueix una força electromotriu al segon circuit, el secundari. Entre el circuit primari i el secundari no hi ha cap connexió, l'energia es transmet a través del flux magnètic que es crea dins del nucli.

El voltatge induït al secundari VS és proporcional al que s'ha aplicat al primari VP segons una raó relacionada amb el nombre de voltes de fil elèctric (espires) en cada bobinat, idealment seria:


\frac{U_{1}}{U_{2}} = \frac{N_{1}}{N_{2}}

El nombre d'espires que composen les bobines determinarà la relació de variació entre les tensions d'entrada i de sortida. Això implica que fent una selecció adequada del nombre de voltes o espires que composen els bobinats primari i secundari podrem determinar el voltatge que ens proporcionarà el secundari.

Els transformadors tenen una importància cabdal a la nostra societat, sense ells no es podria fer el transport d'energia a grans distàncies com les que que hi ha entre les centrals elèctriques productores d'electricitat i els consumidors. I, a una altra escala, són imprescindibles per al funcionament de la majoria dels aparells que funcionen amb electricitat atès que en necessiten voltatges molt més petits que els que ens arriben a casa, un ordinador o un televisor disposen d'un transformador per poder funcionar. Paral·lelament a la varietat d'utilitzacions, domèstiques o industrials, hi ha una gran variació de tipus, formes, mides i prestacions, poden anar de pocs mil·límetres i pocs grams de pes fins a metres i centenars de tones, però tots els transformadors es basen en els mateixos principis de funcionament.


Taula de continguts

[edita] Història

El principi sobre el que es fonamenta el funcionament del transformador va ser demostrat per Michael Faraday el 1831, l'anell d'inducció que va crear va ser el primer transformador, però es va limitar a utilitzar-lo per a demostrar el fenomen de la inducció electromagnètica i mai li va donar cap aplicació pràctica.

El 1876, l'enginyer rus Pavel Yablochkov va inventar un sistema d'il·luminació basat en un conjunt de bobines d'inducció i unes làmpades de la seva invenció (Làmpada Yablochkov), les bobines funcionaven com un transformador. Aquest sistema va tenir força èxit comercial i fins i tot es va utilitzar als carrers de París el 1881.

Lucien Gaulard i John Dixon Gibbs van desenvolupar entre 1881 i 1884 un ginys que anomenaren generador secundari que no era altra cosa que un transformador. El primer prototip utilitzava un nucli de ferro obert i era poc eficient. El 1883 van utilitzar un nucli de barres per a transportar corrent altern de 2000 volts a una distància de 40 Km. El darrer model patentat per Gaulard el 1886, ja amb un circuit magnètic tancat, té poc a envejar als dissenys actuals. El 1885 la companyia nord-americana "Westinghouse Electric Corporation" es va interessar pels transformadors de Gaulard i va comprar-ne els drets per als Estats Units.

Després que George Westinghouse va comprar les patents de Gaulard, l'enginyer William Stanley, un enginyer de la companyia Westinghouse, va dissenyar el primer transformador comercial el 1886 amb un nucli fet amb plaques de ferro en forma de E.

El 1885 els enginyers hogaresos Zipernowsky, Bláthy i Déri de la companyia Ganz de Budapest van crear a partir dels dissenys de Gaulard i Gibbs un transformador molt eficient anomenat "ZBD" amb un nucli tancat. La seva patent va ser la primera que va utilitzar el mot "transformador".

El 1889 l'enginyer rus Mikhail Dolivo-Dobrovolsky va desenvolupar el primer transformador trifàsic.

El 1891 Nikola Tesla va inventar la bobina Tesla, un transformador amb nucli d'aire composat per una sèrie de circuits ressonants acoblats que pot generar corrents a molt alta tensió i freqüència. La idea inicial de Tesla era aconseguir de transmetre l'energia elèctrica sense necessitat de conductors, però no va reeixir perquè la transmissió es feia en totes direccions. Aquesta idea ha estat represa el 2006 per un equip d'investigadors del Massachusetts Institute of Technology sota el nom de witricity[1].

Tot i les noves tecnologies han substituït la utilització dels transformadors en algunes aplicacions electròniques, encara són utilitzats en moltes d'altres i jugant un paper essencial en el transport d'energia elèctrica, fent-la possible i econòmicament rendible. Els transformadors van ser un factor essencial en l'adopció del corrent altern front el corrent continu en fer possible el transport a grans distàncies.

[edita] Principi de funcionament

El corrent d'intensitat I1 i voltatge U1) aplicat al primari N1 crea un camp magnètic variable, el flux magnètic Φ al llarg del circuit magnètic indueix un corrent elèctric a l'enrotllament secundari N2 d'intensitat I2 i voltatge U2.
El corrent d'intensitat I1 i voltatge U1) aplicat al primari N1 crea un camp magnètic variable, el flux magnètic Φ al llarg del circuit magnètic indueix un corrent elèctric a l'enrotllament secundari N2 d'intensitat I2 i voltatge U2.

El funcionament del transformador es basa en dos principis:

  • un corrent elèctric pot produir un camp magnètic
  • un camp magnètic canviant a un bobinat de fil elèctric indueix un corrent elèctric als seus extrems

En canviar el corrent de l'enrotllament primari canvia la força del camp magnètic, quan el camp magnètic variable afecta l'enrotllament secundari s'hi indueix una diferència de potencial elèctric.

La imatge de la dreta representa l'esquema del funcionament d'un transformador simplificat. El marc quadrangular representa un nucli ferromagnètic d'alta permeabilitat magnètica, com el ferro, sobre el qual hi ha dos enrotllaments o bobinats de fil esmaltat, el de l'esquerra és el primari perquè és el que rebrà l'aplicació d'un corrent elèctric; el de l'esquerra és el secundari perquè és al que s'induirà una diferència de potencial als seus extrems. Noti's que no hi ha connexió entre el primari i el secundari, l'esmalt que cobreix el fil elèctric utilitzat fa que no hagi contacte entre les diferents voltes o espires ni amb el material del nucli

El corrent d'intensitat I1 i voltatge U1 aplicat passa pel bobinat primari (N1, a l'esquerra) genera un camp magnètic (que serà variable perquè apliquem un corrent altern) i s'estableix un flux magnètic Φ al llarg del circuit magnètic que es crea dins del nucli que transporta energia del primari al secundari de manera que s'indueix un corrent al secundari (N2, a la dreta) d'intensitat I2 i voltatge U2.

[edita] La llei de la inducció

El voltatge induït pot ser calculat amb la llei de Faraday, que estableix que

\mathcal{E}=-N{d \Phi_B \over d t}

on

  • ε és la força electromotriu (fem) induïda
  • N és en nombre de voltes del bobinat
  • dΦ/dt és la taxa de canvi al llarg del temps del flux magnètic Φ.

Si les voltes o espires del bobinat són orientades de manera perpendicular a les línies del camp magnètic, el flux serà igual al producte de la força del camp magnètic B i l'àrea que talla. L'àrea és constant, essent igual a la secció del nucli magnètic del transformador, per tant el camp magnètic canviarà amb el temps d'acord amb la variació del corrent. El signe negatiu de la fórmula, la direcció de la força electromotriu, va ser introduït per la llei de Lenz i indica que és contrària a la causa que crea la fem.

Seguint l'exemple de l'esquema, tindrem que el corrent altern aplicat (U1) produirà en el circuit primari una intensitat que generarà un flux magnètic tancat (Φ) a través del nucli magnètic. Al seu torn aquest flux magnètic Φ induirà una fem ε1 a l'enrotllament primari


\mathcal{E}_{1}= - N_{1} \frac{\mathrm{d}\Phi}{\mathrm{d}t}

i una altra fem ε2en el secundari:


\mathcal{E}_{2}= - N_{2} \frac{\mathrm{d}\Phi}{\mathrm{d}t}

Si dividim les dues expressions anteriors arribarem a l'equació que relaciona les tensions d'entrada i sortida amb el nombre de voltes del primari i del secundari:


\frac{\mathcal{E}_{1}}{\mathcal{E}_{2}} = \frac{N_{1}}{N_{2}}

Si \frac{\mathcal{E}_{1}}{\mathcal{E}_{2}} > 1 es tractarà d'un transformador que redueix la tensió d'entrada. Si \frac{\mathcal{E}_{1}}{\mathcal{E}_{2}} < 1 es tractarà d'un transformador que augmenta la tensió d'entrada. Podem tenir transformadors que redueixin la tensió d'entrada i d'altres que l'augmentin.


[edita] Vegeu també

[edita] Notes

  1. Wireless energy could power consumer, industrial electronics