On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Mètode d'Euler - Viquipèdia

Mètode d'Euler

De Viquipèdia

Il·lustració del mètode d'Euler. La corba blava és desconeguda, amb la seva aproximació poligonal en vermell.
Il·lustració del mètode d'Euler. La corba blava és desconeguda, amb la seva aproximació poligonal en vermell.

En matemàtiques i ciència computacional, el mètode d'Euler, és un procés numèric per resoldre equacions diferencials ordinàries (EDOs) amb un donat valor inicial. És el cas més bàsic de mètode explícit d'integració numèrica per a equacions diferencials ordinàries. El mètode pren el nom del seu autor, Leonhard Euler.

[edita] Descripció geomètrica informal

Considerem el problema de calcular l'àrea d'una corba desconeguda que comença en un punt donat i satisfà una equació diferencial donada. L'equació diferencial es pot interpretar com una fórmula que permet calcular el pendent de la recta tangent a qualsevol punt de la corba, un cop s'ha calculat la posició d'aquest punt.

La idea és que, encara que la corba és inicialment desconeguda, el seu punt inicial, que notarem per A0, és conegut (veure la il·lustració superior). Llavors, a partir de l'equació diferencial, es pot calcular el pendent de la corba a A0, i per tant, la recta tangent en el punt inicial.

Avancem un petit pas al llarg d'aquesta recta tangent cap a un punt A1. Si suposem que A1 encara es troba sobre la corba, es pot utilitzar el mateix raonament que pel punt A0. Després d'uns quants passos, es calcula la corba poligonal A_0A_1A_2A_3\dots. En general, aquesta corba no divergeix gaire de la corba original desconeguda, i l'error entre ambdues corbes es pot reduir si la mida del pas és suficientment petita i l'interval de computació és finit.

[edita] Derivació

Il·lustració d'integració numèrica per l'equació y' = y,y(0) = 1. Blau: el mètode d'Euler, Verd: el mètode del punt mig, Vermell: la solució exacta, y = et.. La mida del pas és h = 1.0.
Il·lustració d'integració numèrica per l'equació y' = y,y(0) = 1. Blau: el mètode d'Euler, Verd: el mètode del punt mig, Vermell: la solució exacta, y = et.. La mida del pas és h = 1.0.
La mateixa il·lustració per h = 0.25. S'observa que el mètode del punt mig convergeix més ràpidament que el mètode d'Euler.
La mateixa il·lustració per h = 0.25. S'observa que el mètode del punt mig convergeix més ràpidament que el mètode d'Euler.

Volem aproximar la solució del problema de valor inicial:

y'(t) = f(t,y(t)), \qquad \qquad y(t_0)=y_0,

utilitzant els dos primers termes de la sèrie de Taylor de y, que representa l'aproximació lineal al voltant del punt (t0,y(t0)) . Un pas del mètode d'Euler des de tn cap a tn+1 = tn + h és

 y_{n+1} = y_n + hf(t_n,y_n).  \qquad \qquad

El mètode d'Euler és explícit, és a dir, la solució yn + 1 és una funció explícita de yi per i \leq n.

Encara que el mètode d'Euler integra una EDO de primer ordre, qualsevol EDO d'ordre N es pot representar com una EDO de primer ordre amb més d'una variables introduint N − 1 variables addicionals, y', y'', ..., y(N), i formulant N equacions de primer grau amb aquestes noves variables. El mètode d'Euler es pot aplicar al vector \mathbf{y}(t)=(y(t),y'(t),y''(t),...,y^{(N)}(t)) per integrar el sistema d'ordre més elevat.

[edita] Error

La magnitud dels errors generats pel mètode d'Euler es pot demostrar per comparació amb una sèrie de Taylor de y. Si assumim que f(t) i y(t) es coneixen exactament al temps t0, llavors el mètode d'Euler dóna la solució aproximada al temps t0 + h com:

y(t_0 + h) = y(t_0) + h f(t_0,y(t_0)) = y(t_0) + h y'(t_0) \, \qquad \qquad

(la segona igualtat prové que y satisfà l'equació diferencial y' = f(t,y)). En comparació, la sèrie de Taylor a h sobre t0 dóna:

y(t_0 + h) = y(t_0) + h y'(t_0) + \frac{1}{2}h^2 y''(t_0) + O(h^3).

L'error introduït pel mètode d'Euler ve donat per la diferència entre aquestes equacions:

\frac{1}{2}h^2 y''(t_0) + O(h^3).

Per h petita, l'error dominant per pas és proporcional a h2. Per resoldre el problema sobre un rang donat de t, el nombre de passos necessaris és proporcional a 1 / h, per tant s'espera que l'error total al final del temps fixat sigui proporcional a h (error per pas multiplicat pel nombre de passos). Per aquesta raó, es diu que el mètode d'Euler és de primer ordre. Això fa que el mètode d'Euler sigui menys precís (per petites h) que altres tècniques d'ordres més alts com el mètode de Runge-Kutta.

El mètode d'Euler també pot ser numèricament inestable. Aquesta limitació, juntament amb la seva lentitud en la convergència, fa que el mètode d'Euler no sigui gaire utilitzat, excepte com a exemple simple d'integració numèrica.

Static Wikipedia March 2008 on valeriodistefano.com

aa   ab   af   ak   als   am   an   ang   ar   arc   as   ast   av   ay   az   ba   bar   bat_smg   bcl   be   be_x_old   bg   bh   bi   bm   bn   bo   bpy   br   bs   bug   bxr   ca   cbk_zam   cdo   ce   ceb   ch   cho   chr   chy   co   cr   crh   cs   csb   cv   cy   da   en   eo   es   et   eu   fa   ff   fi   fiu_vro   fj   fo   fr   frp   fur   fy   ga   gd   gl   glk   gn   got   gu   gv   ha   hak   haw   he   hi   ho   hr   hsb   ht   hu   hy   hz   ia   id   ie   ig   ii   ik   ilo   io   is   it   iu   ja   jbo   jv   ka   kab   kg   ki   kj   kk   kl   km   kn   ko   kr   ks   ksh   ku   kv   kw   ky   la   lad   lb   lbe   lg   li   lij   lmo   ln   lo   lt   lv   map_bms   mg   mh   mi   mk   ml   mn   mo   mr   ms   mt   mus   my   mzn   na   nah   nap   nds   nds_nl   ne   new   ng   nl   nn   nov  

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu