Forma lineal
De Viquip??dia
Sigui V un objecte matem??tic qualsevol amb estructura lineal sobre un altre objecte K amb estructura aritm??tica. T??picament V ??s un K-m??dul sobre un anell K, o un espai vectorial sobre un cos K. Una forma lineal ?? ??s una aplicaci??
de l'objecte V a l'objecte K que compleix el requeriment de linealitat:
Si V ??s un espai vectorial, les formes lineals a V se solen anomenar tamb?? covectors, en contraposici?? al nom de vectors que hom fa servir pels elements de V.
Taula de continguts |
[edita] Notaci??
Si ?? ??s una forma lineal i , hom sol usar la notaci??
per expressar el valor de la forma en l'element , ??s a dir, .
[edita] Objectes duals
El conjunt de les formes lineals de l'objecte V a l'objecte K ??s l'estructura dual de l'objecte . Si V ??s un K-m??dul o un K-espai vectorial, ??s, respectivament, el K-m??dul dual o l'espai dual.
[edita] C??lcul
Com que, en tots els casos, una forma lineal no ??s m??s que un homomorfisme de V a l'objecte K, si V ??s un m??dul lliure finitament generat o un espai vectorial de dimensi?? finita, hom pot condensar tota la informaci?? sobre una certa forma lineal ?? en la matriu d'aquest homomorfisme. Si ??s una base de V i prenem com a base de K, la matriu de la forma lineal ?? ??s
d'una fila i n columnes. Per aquest motiu, les formes lineals a espais vectorials tamb?? se solen anomenar vectors fila en contraposici?? als elements de l'espai que s??n els vectors columna.
El c??lcul del valor de la forma ?? en l'element es fa amb el producte habitual de matrius: