On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Arithmétique

Arithmétique

Page d'aide sur les redirections Pour le film de 1952, voir Arithmétique (film).
Illustration d’une décomposition arborescente d’un calcul arithmétique faisant intervenir l’addition (symbole +), la soustraction (symbole -), la multiplication (symbole *), le quotient (symbole /) et le reste (symbole %) de la division euclidienne.

L’arithmétique est une branche des mathématiques qui comprend la partie de la théorie des nombres qui utilise des méthodes de la géométrie algébrique et de la théorie des groupes[réf. nécessaire]. On l'appelle plus généralement la « science des nombres ». Son étymologie provient du mot grec « ἀριθμός » qui signifie « nombre ».

Autrefois, l'arithmétique se limitait à l'étude des propriétés des entiers naturels, des entiers relatifs et des nombres rationnels (sous forme de fractions), et aux propriétés des opérations sur ces nombres.

Les opérations arithmétiques traditionnelles sont l'addition, la division, la multiplication, et la soustraction.

Cette discipline fut ensuite élargie par l'inclusion de l'étude d'autres nombres comme les réels (sous forme de développement décimal illimité), ou même de concepts plus avancés, comme l'exponentiation ou la racine carrée.

Une arithmétique est une manière de représenter formellement (autrement dit, coder) les nombres (sous la forme d'une liste de chiffres, par exemple) ; et (grâce à cette représentation) définir les opérations de bases : addition, multiplication, etc.

Histoire

Dans l'école pythagoricienne, à la deuxième moitié du VIe siècle av. J.-C., l'arithmétique était, avec la géométrie, l'astronomie et la musique, une des quatre sciences quantitatives ou mathématiques (Mathemata). Celles-ci furent regroupées au sein des sept arts libéraux par Martianus Capella (Ve siècle) et plus précisément désignées sous le nom de quadrivium par Boèce. Les trois autres disciplines étaient littéraires (grammaire, rhétorique, dialectique) et firent l'objet des travaux de Cassiodore et, plus tard, Alcuin qui leur donna le nom de trivium.

Différentes arithmétiques

Arithmétique élémentaire

Article détaillé : Arithmétique élémentaire.

L'expression « arithmétique élémentaire » désigne parfois la forme la plus basique des mathématiques, apprise à l’école élémentaire. Il s’agit essentiellement de l'étude des nombres et des opérations élémentaires (soustraction, addition, division, multiplication).

Ce terme désigne aussi les rudiments des techniques de l'arithmétique. Les outils utilisés sont la division euclidienne, le lemme d'Euclide, le théorème de Bachet-Bézout ou encore le théorème fondamental de l'arithmétique. Il permet de démontrer des théorèmes comme celui de Wilson ou encore le petit théorème de Fermat.

Cette deuxième acception du terme est traitée dans l'article détaillé.

Arithmétique modulaire

Article détaillé : Arithmétique modulaire.

Carl Friedrich Gauss (1777 - 1855) étudie l'ensemble des classes de congruence des entiers relatifs modulo un entier donné. Chaque classe correspond à un reste de la division euclidienne par cet entier, et l'ensemble est naturellement muni d'une addition et d'une multiplication.

L'étude de cette structure porte le nom d'arithmétique modulaire. Elle permet de généraliser les résultats de l'arithmétique élémentaire. Le théorème d'Euler, correspondant à un résultat plus fort que celui du petit théorème de Fermat, illustre une généralisation.

L'arithmétique modulaire est utilisé en cryptologie ou pour la construction de codes correcteurs en informatique.

Théorie algébrique des nombres

Article détaillé : Théorie algébrique des nombres.

De nombreuses questions ne trouvent pas de réponse, même avec les techniques de l'arithmétique modulaire. Des exemples proviennent d'équations diophantiennes, c'est-à-dire d'équations dont les coefficients sont entiers et dont les solutions recherchées sont entières. Une méthode consiste à élargir l'ensemble des entiers à une nouvelle structure qualifiée d'anneau d'entiers algébriques, comme celui des entiers de Gauss.

L'étude de ces structures, plus générales que celles de l'arithmétique modulaire qui se limite aux anneaux euclidiens, constitue le premier chapitre de la théorie algébrique des nombres.

Arithmétique des polynômes

Article détaillé : Arithmétique des polynômes.

L'étude de l'arithmétique, au sens des nombres entiers, suppose d'établir des théorèmes. Ces théorèmes se démontrent à l'aide de techniques qui ne se limitent pas aux nombres entiers. Il est possible de faire usage de la même démarche sur d'autres structures, comme celle des polynômes. À travers l'étude des polynômes cyclotomiques, Gauss parvient à trouver un nouveau polygone régulier constructible à la règle et au compas, de 17 côtés.

Sa démarche est de nature arithmétique, pour cette raison, on parle d'arithmétique des polynômes.

Ensembles utilisés en arithmétique

La totalité des nombres a été subdivisée en divers ensembles. Les plus connus sont :

  • \mathbb{N} : l'ensemble des entiers naturels (0;\,1;\, 2;\, 3;\, 4;\, 5;\mbox{ etc.}).
  • \mathbb{Z} : l'ensemble des entiers relatifs (-12;\, -2;\, 0 ;\, 5;\, 6;\mbox{ etc.}).
  • \mathbb{D} : l'ensemble des nombres décimaux, c'est-à-dire qui s'écrivent sous la forme d'un quotient d'un nombre entier relatif et d'une puissance positive de 10, c'est-à-dire, \frac {x}{10^n}x est un nombre entier relatif et n un nombre entier naturel \left ( -\frac{1}{2};\, 0;\, 6,36;\, 25;\mbox{ etc.}\right).
  • \mathbb{Q} : l'ensemble des nombres rationnels, c'est-à-dire des nombres pouvant s'écrire comme un quotient (résultat d'une division) de deux nombres entiers relatifs. En posant la division, il peut y avoir une infinité de chiffres après la virgule dans le résultat, mais ces chiffres finiront par se répéter; dans ce cas on dit que l'écriture décimale est illimitée périodique. \left({1\over3};\, -{5\over13};{22\over7}\mbox{ etc.}\right).
  • \mathbb{R} : l'ensemble des nombres réels, mesurant toutes les distances entre deux points d'une droite, peuvent se voir comme limite de nombres rationnels, peuvent s'écrire avec des chiffres après la virgule mais les chiffres ne se répètent plus nécessairement (\pi, soit \sqrt 2).
  • \mathbb{C} : nombres complexes de la forme x+iy où x et y sont réels et i imaginaire tel que i^2 = -1.

Certains de ces ensembles sont des sous-ensembles des autres ; Tous les éléments de \mathbb{N} appartiennent aussi à \mathbb{Q}, par exemple. Mais à l'inverse, un élément de \mathbb{Q} n'est pas forcément élément de \mathbb{N}. On peut représenter ces ensembles par des cercles concentriques: le plus petit est \mathbb{N}, puis viennent \mathbb{Z}, \mathbb{D}, \mathbb{Q}, \mathbb{R} et \mathbb{C}.

Il est possible de ne considérer qu'une partie d'un ensemble. Ainsi, on notera \mathbb{R^+} l'ensemble des nombres positifs de \mathbb{R}. De même on notera \mathbb{R^*} l'ensemble \mathbb{R} privé de 0. On remarque entre autres que \mathbb{Z^+}\,=\,\mathbb{N} et que \mathbb{Z} \backslash \mathbb{N}\,=\,\mathbb{Z^{-*}} (il s'agit de \mathbb{Z} « privé de » \mathbb{N}.).

Propriétés

De nombreux nombres entiers ont des propriétés particulières. Ces propriétés font l'objet d'une théorie appelée Théorie des nombres. Parmi ces nombres particuliers les nombres premiers sont sans doute les plus importants.

Nombres premiers

C'est le cas des nombres dits premiers. Ce sont des éléments de ℕ possédant uniquement deux diviseurs positifs distincts, à savoir 1 et eux-mêmes. Les premiers nombres premiers sont 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 etc. 1 n'est pas premier car il n'a pas deux diviseurs distincts, mais un seul. Il existe une infinité de nombres premiers. En complétant une grille de taille 10 × 10 avec les 100 premiers entiers non nuls, et en rayant ceux qui ne sont pas premiers, on obtient les nombres premiers appartenant à { 1, … , 100 } par un procédé appelé un crible d'Ératosthène, du nom du savant grec qui l'inventa.

Nombres pairs et impairs

Les entiers naturels sont divisés en deux catégories bien connues des joueurs de roulette: les pairs et les impairs.

Un entier n pair est un multiple de 2 et peut être noté n = 2\,k, avec k\in\mathbb{N}. Un nombre n impair n'est pas multiple de 2 et se note n = 2\,k + 1, avec k\in\mathbb{N}.

On montre que tout entier est soit pair soit impair, et au moins l'un des deux, et ce pour un unique k : on note \forall n\in\mathbb{N},\, \exists ! k\in\mathbb{N},\,\left(n=2\,k\lor n=2\,k+1\right)
Les premiers entiers pairs sont 0, 2, 4, 6, 8, 10 ... Les premiers entiers impairs sont 1, 3, 5, 7, 9, 11 ...

Bibliographie

En mathématiques

  • Jean-Pierre Serre, Cours d'arithmétique [détail des éditions]

En philosophie

Voir aussi

  • Addition des entiers naturels
  • Associativité
  • Commutativité
  • Distributivité
  • Transitivité
  • Ordre des opérations
  • Arithmétique des intervalles
  • Arithmétique saturée
  • Nombre premier
  • Portail de l’arithmétique et de la théorie des nombres
This article is issued from Wikipédia - version of the Wednesday, September 30, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu