On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Prodotto infinito - Wikipedia

Prodotto infinito

Da Wikipedia, l'enciclopedia libera.

In matematica si dice prodotto infinito relativo ad una successione di numeri reali o complessi a1, a2, a3, ... l'entità che si denota con


\prod_{n=1}^{\infty} a_n = a_1 \; a_2 \; a_3 \cdots

e che si definisce come il limite dei prodotti parziali a1a2...an per n tendente all'infinito. Il prodotto si dice convergente quando esiste un intero m tale che la successione


\{\prod_{n=m}^{q} a_n\}_q

abbia un limite diverso da 0 e da ±∞. In caso contrario si dice che il prodotto è divergente. In questo modo un prodotto infinito è nullo se e solo se si ha an=0 per un qualche n. Con tale definizione molte delle proprietà delle somme di serie infinite si possono trasformare in analoghe proprietà per i prodotti infiniti.

Se il prodotto infinito converge, allora il limite della successione an per n tendente all'infinito deve essere 1, mentre il fatto che la successione tenda a 1 non implica necessariamente che il prodotto infinito converga. Di conseguenza esiste m tale che per nm si abbia an>0. Dunque, per tali valori di n è definito il logaritmo log an e si ha

\log \prod_{n=m}^{\infty} a_n = \sum_{n=m}^{\infty} \log a_n

con il prodotto a primo membro che converge se e solo se la somma al secondo membro converge. Questa situazione simmetrica consente di tradurre i criteri di convergenza per le somme infinite in criteri di convergenza per i prodotti infiniti.

Per prodotti nei quali per ogni n si ha a_n\ge1, introducendo i numeri pn: = an − 1, per i quali deve essere p_n\ge 0, si trovano le disuguaglianze

1+\sum_{n=1}^{N} p_n \le \prod_{n=1}^{N} \left( 1 + p_n \right) \le \exp \left( \sum_{n=1}^{N}p_n \right)

e queste mostrano che il prodotto infinito converge se e solo se converge la successione dei pn.

Gli esempi più noti di prodotti infiniti sono probabilmente dati da alcune delle formule trovate per π, come le seguenti ottenute, rispettivamente, da François Viète (v. formula di Viète) e John Wallis (v. prodotto di Wallis):

\frac{2}{\pi} = \frac{ \sqrt{2} }{ 2 } \cdot \frac{ \sqrt{2 + \sqrt{2}} }{ 2 } \cdot \frac{ \sqrt{2 + \sqrt{2 + \sqrt{2}}} }{ 2 } \cdots
\frac{\pi}{2} =  \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \prod_{n=1}^{\infty} \left( \frac{ 4 \cdot n^2 }{ 4 \cdot n^2 - 1 } \right)

[modifica] Rappresentazione di funzioni mediante prodotti

Per approfondire, vedi la voce Teorema di fattorizzazione di Weierstrass.

Un risultato importante sui prodotti infiniti consiste nel fatto che ogni funzione intera f(z) (cioè ogni funzione olomorfa sull'intero piano complesso) si può fattorizzare come prodotto infinito di funzioni intere ciascuna delle quali presenta al più un singolo zero. In generale, se f presenta uno zero di ordine m nell'origine e possiede altri zeri complessi nei punti u1, u2, u3, ... (elencati con le molteplicità uguali ai loro ordini), allora


f(z) = z^m \; e^{\phi(z)} \; \prod_{n=1}^{\infty} \left(1 - \frac{z}{u_n} \right) \;
\exp \left\lbrace \frac{z}{u_n} + \frac12\left(\frac{z}{u_n}\right)^2 + \cdots + \frac1{\lambda_n}\left(\frac{z}{u_n}\right)^{\lambda_n} \right\rbrace

dove i λn sono interi non negativi che si possono scegliere per rendere il prodotto convergente, e φ(z) è qualche funzione analitica univocamente determinata (il che significa che il fattore che precede il prodotto non presenta zeri nel piano complesso). La precedente fattorizzazione non è unica, in quanto dipende dalla scelta dei λn e non è particolarmente elegante. Per gran parte delle funzioni, tuttavia, si trova qualche intero non negativo minimo p tale che λn = p fornisce un prodotto convergente; questo viene chiamato la rappresentazione canonica mediante prodotto. Questo p viene chiamato rango del prodotto canonico. Inoltre, se φ(z) è un polinomio, il grado di φ si dice ordine di f. Nel caso che sia p = 0, questo prende la forma


f(z) = z^m \; e^{\phi(z)} \; \prod_{n=1}^{\infty} \left(1 - \frac{z}{u_n}\right)

Questa può essere considerata come una generalizzazione del teorema fondamentale dell'algebra, in quanto per le funzioni polinomiali il prodotto diventa finito e la funzione φ(z) si riduce a una costante. Rappresentazioni di questo tipo sono:

Funzione seno

\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)

Eulero - la formula di Wallis per π è un caso particolare di questa.

funzione Gamma

1 / \Gamma(z) = z \; \mbox{e}^{\gamma z} \; \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) \; \mbox{e}^{-z/n}

Oscar Schlömilch.

Un altro esempio di prodotto infinito di funzioni è

funzione zeta di Riemann

\zeta(z) = \prod_{n=1}^{\infty} \frac{1}{(1 - p_n^{-z})}

Prodotto di Eulero - Qui i pn costituiscono la successione dei numeri primi.

Si osservi che questa rappresentazione non è una rappresentazione nella forma di Weierstrass.


Static Wikipedia March 2008 on valeriodistefano.com

aa   ab   af   ak   als   am   an   ang   ar   arc   as   ast   av   ay   az   ba   bar   bat_smg   bcl   be   be_x_old   bg   bh   bi   bm   bn   bo   bpy   br   bs   bug   bxr   ca   cbk_zam   cdo   ce   ceb   ch   cho   chr   chy   co   cr   crh   cs   csb   cv   cy   da   en   eo   es   et   eu   fa   ff   fi   fiu_vro   fj   fo   fr   frp   fur   fy   ga   gd   gl   glk   gn   got   gu   gv   ha   hak   haw   he   hi   ho   hr   hsb   ht   hu   hy   hz   ia   id   ie   ig   ii   ik   ilo   io   is   it   iu   ja   jbo   jv   ka   kab   kg   ki   kj   kk   kl   km   kn   ko   kr   ks   ksh   ku   kv   kw   ky   la   lad   lb   lbe   lg   li   lij   lmo   ln   lo   lt   lv   map_bms   mg   mh   mi   mk   ml   mn   mo   mr   ms   mt   mus   my   mzn   na   nah   nap   nds   nds_nl   ne   new   ng   nl   nn   nov  

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu