On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Mars Reconnaissance Orbiter - Wikipedia

Mars Reconnaissance Orbiter

Da Wikipedia, l'enciclopedia libera.

Mars Reconnaissance Orbiter
Immagine ipotetica del Mars Reconnaissance Orbiter su Marte
Proponente: NASA
Destinazione: Marte
 Lanciatore  Atlas V
Lancio

12 agosto 2005

Massa 2180 Kg
Potenza {{{potenza}}}
Strumenti
  • Camera
    • HiRISE (High Resolution Imaging Science Experiment)
    • CTX (Context Camera)
    • MARCI (Mars Color Imager)
  • Spettrometri
    • CRISM (Compact Reconnaissance Imaging Spectrometer for Mars)
  • Radiometro
    • MCS (Mars Climate Sounder)
  • Radar
    • SHARAD (Shallow Radar)
  • Strumenti complementari
    • Analisi del campo gravitazionale
    • Analisi della densità atmosferica
  • Esperimenti tecnologici
    • Electra UHF Communications and Navigation Package
    • Optical Navigation Camera
    • Ka-band Telecommunications Experiment Package
Esito

La missione è attualmente in corso

Il Mars Reconnaissance Orbiter (acronimo: MRO) è una sonda spaziale polifunzionale della NASA lanciata il 12 agosto 2005. Il suo obbiettivo è l'analisi dettagliata del pianeta Marte allo scopo di individuare un potenziale luogo di atterraggio per future missioni sul pianeta. La sonda è progettata anche per fornire alle future missioni un canale trasmissivo a banda larga tra la Terra e Marte. È progettato per funzionare come sonda per quattro anni per poi diventare il quarto satellite artificiale di Marte (sul pianeta si trovano già il Mars Express, il Mars Odyssey e il Mars Global Surveyor) oltre a diventare la sesta sonda attiva su Marte (contando anche i due Rover).

Indice

[modifica] Panoramica

Lancio dell'Atlas V contenente il Mars Reconnaissance Orbiter, 11:43:00 a.m UTC 12 agosto, 2005
Lancio dell'Atlas V contenente il Mars Reconnaissance Orbiter, 11:43:00 a.m UTC 12 agosto, 2005

MRO sta conducendo la propria missione scientifica per due anni, a decorrere dall'aerofrenaggio e dai controlli tecnici che sono stati completati nel novembre 2006. Dopo, la missione verrà estesa per rendere il satellite un canale di comunicazione per gli altri esperimenti scientifici.

Il Mars Reconnaissance Orbiter verrà utilizzato dalla NASA per la pianificazione delle future missioni al suolo, che comprendono il Phoenix Mars Lander, che raggiungerà il pianeta nel 2008 e il Mars Science Laboratory, un rover avanzato che dovrebbe partire nella finestra di lancio del 2009. Il MRO è una sonda dotata di strumenti ad alta risoluzione progettati per studiare il miglior punto di atterraggio su Marte. Gli strumenti del MRO consntono alla NASA di scegliere il luogo con i minor rischi e i maggior benefici dal punto di vista scientifico. Gli strumenti verranno utilizzati anche per investigare sul motivo del fallimento della missione Mars Polar Lander e delle missione dell'ESA Beagle.

[modifica] Cronologia del lancio e del viaggio

  • Il 30 aprile 2005, la sonda è stata trasportata nel sito di lancio.
  • Il 9 agosto 2005 la prima finestra di lancio, quella del 10 agosto, è stata scartata per via di alcuni problemi verificatisi ai giroscopi del vettore Atlas V.
  • Il 10 agosto, i problemi dei giroscopi sono stati risolti, il lancio è stato previsto per le 7:50am EST dell'11 agosto.
  • L'11 agosto, le condizioni atmosferiche non favorevoli hanno fatto spostare il lancio alle 9:00am EST. Rilevazioni contrastanti trasmesse dai sensori del razzo riguardanti i serbatoi di idrogeno liquido hanno costretto il controllo missione a spostare il lancio per le 7:43am EST del 12 agosto.
  • Alle 7:43am EST 12 agosto, MRO è stato lanciato. Non si sono verificate significative anomalie durante il lancio o il dispiegamento della sonda nello spazio. La prima correzione di traiettoria dovrebbe avvenire tra 20 giorni.
  • Il 15 agosto, 2005, il MARCI viene testato e calibrato.
  • Il Mars Reconnaissance Orbiter ha percorso 100 milioni di chilometri verso Marte il 25 agosto 2005.
  • Il 27 agosto viene eseguita la prima manovra di correzione orbitale. I motori vengono attivati per 15 secondi, gli stessi motori serviranno per le manovre di inserzione orbitali. La velocità arriva a 7.8 metri/secondo.
  • L'8 settembre 2005 MRO completa la calibrazione dello strumento HiRISE e CTX attraverso osservazioni della Luna che al momento dista 10 milioni di chilometri.
  • Il 19 novembre 2005 la sonda esegue la seconda correzione orbitale, accende i 6 propulsori secondari per 20 secondi variando la velocità di 75 centimetri al secondo.
  • Mars Reconnaissance Orbiter il 29 gennaio 2006 dista 10 milioni di chilometri da Marte.
  • Il 3 febbraio 2006 la sonda inizia le manovre di approccio orbitale.

[modifica] Cronologia della missione

Orbita della sonda durante il transito tra la Terra e Marte
Orbita della sonda durante il transito tra la Terra e Marte
illustrazione dell'aerofrenaggio.
illustrazione dell'aerofrenaggio.

Il Mars Reconnaissance Orbiter è stato lanciato il 12 agosto, 2005. Tra il 10 agosto e il 30 agosto, le due ore della finestra di lancio erano disponibili quasi ogni giorno. È stato lanciato dallo Space Launch Complex 41 della Cape Canaveral Air Force Station, con un razzo Atlas V-401 fornito di uno stadio Centaur. 56 minuti dopo il lancio lo stadio Centaur è completamente bruciato mettendo MRO in orbita di transito interplanetaria verso Marte.

MRO ha viaggiato nello spazio per 7 mesi e mezzo prima di raggiungere Marte. Quattro correzioni di traiettoria sono state necessarie durante il volo più ovviamente tutte quelle necessarie per mettere la sonda in un orbita stabile di Marte.

L'inserimento orbitale del MRO è iniziato il 3 marzo ed è terminato il 10 marzo 2006. Nelle due settimane successive sono state effettuate delle analisi sulle strumentazioni e sull'efficienza della sonda.

L'aerofrenaggio è iniziato il 30 marzo, utilizzato per condurre la sonda in un orbita più bassa percorsa con maggiore velocità. Viene utilizzata questa tecnica per via del risparmio di combustibile che ne deriva, un'inserzione orbitale basata totalmente sui motori avrebbe consumato il doppio del combustibile.

L'aerofrenaggio si compone di tre fasi:

  1. MRO riduce la propria altezza utilizzando i motori. L'altezza di aerofrenaggio verrà definita allora, a seconda della densità dell'atmosfera marziana. Va ricordato che la pressione atmosferica marziana varia a seconda delle stagioni. Questa fase richiederà circa 5 orbite e approssimativamente una settimana.
  2. MRO rimane in aerofrenaggio per circa 5 mesi terrestri e mezzo, che sono equivalenti a circa 500 orbite, con piccole correzioni orbitali. Questa fase porterà la sonda in un orbita con distanza massima da Marte di circa 450 km, in modo da non surriscaldare la sonda e contemporaneamente mantenerla sufficientemente immersa nell'atmosfera per rendere l'aerofrenaggio efficace.
  3. La fase dell'aerofrenaggio è terminata il 30 agosto, quando la MRO ha usato i propri motori per spostarsi fuori dall'atmosfera marziana.

Dopo aver effettuato un'ultima correzione nel settembre 2006, la sonda ha raggiunto l'orbita finale, che è quasi perfettamente circolare ad un'altitudine compresa tra i 250 e i 316 km[1].

L'antenna a dipolo SHARAD è stata dispiegata il 16 settembre e il test di tutti gli strumenti scientifici è stato concluso prima dello spegnimento degli stessi prima della congiunzione solare avvenuta tra il 7 ottobre 2006 e il 6 novembre 2006. Dopo la congiunzione è iniziata la fase primaria della missione.

Il 17 novembre 2006, la NASA ha annunciato che il test della sonda come ripetitore per telecomunicazioni è stato compiuto con successo, trasmettendo dei dati provenienti dal rover Spirit verso la Terra.

[modifica] Strumentazioni

Quantità di dati che MRO potrà trasmettere
Quantità di dati che MRO potrà trasmettere
Lunghezza d'onda degli strumenti scientifici
Lunghezza d'onda degli strumenti scientifici

I principali obiettivo del Mars Reconnaissance Orbiter è la ricerca e l'individuazione di acqua, l'analisi dell'atmosfera e della geologia del pianeta.

Sei strumenti scientifici sono inclusi nella sonda insieme a due strumenti complementari che utilizzeranno dati delle sonda per raccogliere dati scientifici. Tre tecnologie sperimentali sono inserite nella sonda, questa verrà utilizzata quindi anche per verificare il funzionamento di nuove soluzioni tecniche.

[modifica] Strumentazione scientifica

[modifica] HiRISE

L'High Resolution Imaging Science Experiment (HiRISE) è un telescopio a riflessione di 0.5m, il maggiore mai impiegato in una missione spaziale. Ha un potere risolutivo di 0.3 m a un'altezza di 300 km. Può riceve immagini a colori nelle bande del rosso, del verde e del blu e dell'infrarosso.

Per comparazione le immagini riprese dai satelliti della Terra hanno una definizione di 0.1m mentre le immagini mostrate da Google Maps hanno al massimo una risoluzione di 1m.

Per facilitare la mappatura e l'individuazione di possibili siti di atterraggio HiRISE produrrà immagini stereoscopiche dove le informazioni topografiche saranno mostrate con una definizione di 0.25 metri.

Comparazione della risoluzione dell'MRO HiRISE rispetto al predecessore
Comparazione della risoluzione dell'MRO HiRISE rispetto al predecessore
HiRISE camera
HiRISE camera


[modifica] CTX

Il Context Imager (CTX) fornirà immagini monocromatiche larghe 40 km con una risoluzione di 8 metri. Il CTX è progettato per funzionare in congiunzione con gli altri strumenti di immagine per fornire il contesto delle mappe che vengono rilevate dagli altri strumenti.

[modifica] MARCI

Il Mars Color Imager (MARCI) suddividerà le immagini di Marte in 5 bande del visibile e 2 nell'ultravioletto. MARCI produrrà delle mappe globali del pianeta per studiare le variazioni giornaliere, stagionali e annuali del clima, lo strumento provvederà anche a fornire le indicazioni meteorologiche giornaliere del pianeta.

[modifica] CRISM

Strumento CRISM
Strumento CRISM

Lo strumento Compact Reconnaissance Imaging Spectrometers for Mars (CRISM) è uno spettrometro che funziona nel visibile e con la luce infrarossa. Produrrà dettagliate mappe della mineralogia del pianeta. Ha un potere risolutivo di 18 metri a 300 km. Opera tra la frequenza di 400 nanometri e quella di 4050 nanometri, suddividendo lo spettro di 560 canali da 6.55 nm di ampiezza.

[modifica] MCS

Il Mars Climate Sounder (MCS) è uno spettrometro a 9 canali che opera nel visibile e nell'infrarosso, un canale opera a 0.3 - 3 micrometri e gli altri otto operano tra i 12 e i 50 micrometri. Questi canali sono stati scelti per misurare temperatura, pressione, vapore acqueo e livello delle polveri.

Lo strumento osserverà l'orizzonte di Marte suddividendo il strisce verticali ed analizzandole separatamente. Ogni striscia è spessa 5 km.

Queste misure saranno riunite per generare delle mappe giornaliere sul tempo marziano. Queste mappe mostreranno le variazioni di temperatura, pressione, umidità e densità.

[modifica] SHARAD

Per approfondire, vedi la voce SHARAD.

Il Radar Shallow Subsurface Radar (SHARAD) è stato progettato per studiare l'interno dei poli marziani. Lo strumento dovrebbe essere in grado di studiare i vari strati di ghiaccio e roccia dei poli e se presente di individuare acqua liquida che se sufficientemente prossima alla superficie potrebbe essere utilizzata dalle future missioni spaziali.

SHARAD opera utilizzando onde radio con frequenze comprese tra i 10 e 30 Mhz. Ha una risoluzione verticale di 7 metri e una profondità di analisi di 1 km. Ha una risoluzione di analisi orizzontale bassa, tra i 0.3 e i 3 km. SHARAD è progettato per operare in congiunzione con MARSIS il radar della sonda ESA Mars Express. MARSIS ha una bassa risoluzione ma un'elevata capacità di penetrare il terreno. Entrambi gli strumenti sono stati promossi dall’Agenzia Spaziale Italiana e SHARAD è stato costruito da Alenia Spazio.

[modifica] Strumenti complementari

[modifica] Analisi del campo gravitazionale

Variazioni del campo gravitazionale di Marte possono essere desunte dalla variazione della velocità del MRO. La velocità del MRO verrà determinata usando lo spostamento doppler del segnale radio che la sonda invierà alla Terra.

[modifica] Analisi della densità atmosferica

Sensibili accelerometri installati a bordo dell'Orbiter sono stati utilizzati per individuare variazioni della densità atmosferica durante la fase dell'aerofrenaggio.

[modifica] Esperimenti tecnologici

[modifica] Electra

Electra è un'antenna UHF, è progettata per comunicare con le future missioni spaziali durante l'atterraggio in modo da favorirne la discesa.

[modifica] Optical Navigation Camera

L'Optical Navigation Camera inquadrerà l'immagine di Phobos e Deimos sullo sfondo stellato e utilizzerà queste immagini per determinare l'orbita attuale della sonda. Questo componente non è essenziale per la sonda, è stato incluso per verificare la bontà della tecnologia in modo da poterla utilizzare nelle future missioni spaziali per consentire un miglior inserimento orbitale o atterraggio delle stesse.

[modifica] Dati tecnici

Comparazione della dimensione del MRO rispetto ai predecessori
Comparazione della dimensione del MRO rispetto ai predecessori

[modifica] Struttura

Operai della Lockheed Martin Space Systems a Denver hanno assemblato la struttura della sonda e montato gli strumenti. Gli strumenti scientifici sono stati costruiti dalla University of Arizona, Tucson, dal Johns Hopkins University Applied Physics Laboratory, Laurel, Md, dall'Agenzia Spaziale Italiana, Roma, dal Malin Space Science Systems, San Diego, California e dal Jet Propulsion Laboratory.

La struttura è in carbonio composito e alluminio. Il serbatoi è formato da titanio, ed occupa la maggior parte del volume della sonda. Il serbatoio rappresenta la maggior parte del peso della sonda ma fornisce anche integrità strutturale alla stessa.

  • Il Peso totale è inferiore a 2.180 chilogrammi
  • La massa senza carburante è di 1.031 chilogrammi

[modifica] Sistema di alimentazione

Pannelli solari del Mars Reconnaissance Orbiter'
Pannelli solari del Mars Reconnaissance Orbiter'

Il Mars Reconnaissance Orbiter riceve tutta la sua energia elettrica da due pannelli solari. Ogni pannello solare è in grado di muoversi indipendentemente sui due assi (alto, basso, rotazione a destra o a sinistra). Ogni pannello misura 5.35 x 2.53 m, e la superficie è coperta per 9.5 m² da 3744 celle fotovoltaiche. Queste celle fotovoltaiche sono ad altissima efficienza infatti sono in grado di convertire il 26% della luce solare in corrente elettrica. Le celle sono collegate in modo da produrre 32 volt, la tensione richiesta dalla maggior parte delle apparecchiature montate sulla sonda. In orbita di Marte i pannelli saranno in grado di produrre 2000 W mentre in orbita intorno alla Terra sono in grado di produrre 6000 W.

Mars Reconnaissance Orbiter utilizza due batterie ricaricabili ibride al nickel metano. Queste batterie sono utilizzate come alimentazione quando i pannelli solari non sono disposti verso il Sole (durante il lancio, l'inserzione in orbita e l'aerofrenaggio) e quando l'orbita di Marte oscura il Sole. Ogni batteria è in grado di immagazzinare 50 ampere ora. La sonda non può utilizzare l'intera potenza delle batterie dato che durante la scarica delle stesse la tensione diminuisce e se questa dovesse scendere sotto i 20 volt i computer smetterebbero di funzionare. Quindi è previsto che la sonda utilizzi circa il 40% della potenza delle batterie.

[modifica] Sistema elettronico

Il computer principale del Mars Reconnaissance Orbiter utilizza un microprocessore da 10,4 milioni di transistor, il RAD750. Questo processore funziona a 133 Mhz, e non è altro che un PowerPC G3 modificato per resistere alle radiazioni dello spazio. Questo processore, rispetto ai processori moderni, è estremamente lento ma la sua caratteristica principale è quella di resistere alle radiazioni spaziali (rad-hardening), come le particelle del vento solare e i raggi cosmici.

I dati vengono memorizzati in una memoria flash da 20 Gbyte formata da 7800 chip, ognuno dalla capacità di 256 Mbyte. Questa memoria è abbastanza piccola per gli strumenti della sonda se si considera che una singola immagine di HiRISE occupa 3.5 Gbyte.

Il sistema operativo utilizzato è il VxWorks, esso è dotato di molti protocolli di protezione e monitoraggio contro i guasti.

[modifica] Sistema di navigazione

Il sistema di navigazione utilizzando i dati dei suoi sensori rileva la posizione e altitudine durante la missione.

  • Sedici sensori rilevano la posizione del Sole (otto sono di riserva). Essi sono disposti intorno alla sonda e misurano la direzione dei raggi solari per permettere al sistema di calcolare orientamento della sonda.
  • Due sensori seguono la traiettoria delle stelle e vengono utilizzati per determinare altitudine e orientamento della sonda. I sensori sono delle semplici telecamere digitali collegate a un database astronomico.
  • Due misuratori inerziali sono installati nella sonda (il secondo è di riserva). Questi forniscono i dati sul movimento della sonda. I misuratori inerziali sono utilizzati in congiunzione con i tre accelerometri e i tre giroscopi laser ad anello.

[modifica] Sistema di telecomunicazione

Montaggio dell'High Gain Antenna
Montaggio dell'High Gain Antenna

Il sottosistema di telecomunicazione utilizza una ampia antenna per trasmettere nello spazio profondo con la normale frequenza di comunicazione nella banda X a 8 Ghz. La stessa antenna verrà utilizzata per provare a trasmettere nella banda Ka a 32 Ghz. Questa nuova banda consentirà un collegamento a banda larga dato che dovrebbe arrivare a trasmettere fino a 6 Mbit/s. Due amplificatori per la banda X da 100 w sono installati, il secondo è di riserva. Un amplificatore per la banda Ka è installato, la sua potenza è di 35 W. Due transponder sono installati nella sonda.

Due piccole antenne a basso guadagno sono utilizzate per comunicazioni lente durante le emergenze o casi particolari come per esempio l'inserimento orbitale. Queste antenne non sono dotate di parabola dato che sono omnidirezionali.

[modifica] Sistema di propulsione

Il serbatoio può contenere 1175 litri di propellente. È riempito con 1187 chilogrammi di idrazina, la pressione del combustibile è regolata tramite l'aggiunta di elio sotto pressione stoccato in un serbatoi esterno. Il settanta percento del combustibile verrà utilizzato per l'inserimento orbitale.

La sonda dispone di 20 propulsori a razzo.

  • 6 propulsori principali, verranno utilizzati per l'inserimento orbitale. Ogni propulsore è in grado di sviluppare 170 newton di spinta, in totale 1020 newton.
  • 6 propulsori medi, verranno utilizzati per le manovre di correzione dell'orbita durante l'inserimento orbitale. Ogni propulsore genera 22 newton di spinta.
  • 8 propulsori piccoli, verranno utilizzati per regolare l'altezza e per le normali operazioni. Ogni propulsore genere 0,9 newton.

Quattro giroscopi sono utilizzati per mantenere stabile la sonda, infatti durante l'acquisizione delle immagini ad alta definizione ogni minima oscillazione renderebbe sfuocata l'immagine. Ciascun giroscopio è utilizzato per gestire un asse; il quarto è di riserva, in caso uno degli altri tre si guastasse. Ogni giroscopio pesa 10 chilogrammi ed è in grado di effettuare 6000 rotazioni al minuto.

[modifica] Voci correlate

[modifica] Altri progetti

[modifica] Note

  1. ^ "Mars Reconnaissance Orbiter Reaches Planned Flight Path" in JPL. URL consultato il September 13.

[modifica] Collegamenti esterni

Esplorazione di Marte
Fly-by Mariner 4Mariner 6 e 7Mars 4
Orbiter Mariner 9Mars 2Mars 3Mars 5Mars 6Viking 1Viking 2Phobos 2Mars Global SurveyorMars OdysseyMars ExpressMars Reconnaissance Orbiter
Lander e Rover Mars 3Viking 1Viking 2Mars PathfinderSpiritOpportunityPhoenix Mars Lander
Missioni future Mars Science Laboratory (2009)Phobos-Grunt (2009) • Mars 2011 • ExoMars (2013)Astrobiology Field Laboratory (2016?)

Static Wikipedia March 2008 on valeriodistefano.com

aa   ab   af   ak   als   am   an   ang   ar   arc   as   ast   av   ay   az   ba   bar   bat_smg   bcl   be   be_x_old   bg   bh   bi   bm   bn   bo   bpy   br   bs   bug   bxr   ca   cbk_zam   cdo   ce   ceb   ch   cho   chr   chy   co   cr   crh   cs   csb   cv   cy   da   en   eo   es   et   eu   fa   ff   fi   fiu_vro   fj   fo   fr   frp   fur   fy   ga   gd   gl   glk   gn   got   gu   gv   ha   hak   haw   he   hi   ho   hr   hsb   ht   hu   hy   hz   ia   id   ie   ig   ii   ik   ilo   io   is   it   iu   ja   jbo   jv   ka   kab   kg   ki   kj   kk   kl   km   kn   ko   kr   ks   ksh   ku   kv   kw   ky   la   lad   lb   lbe   lg   li   lij   lmo   ln   lo   lt   lv   map_bms   mg   mh   mi   mk   ml   mn   mo   mr   ms   mt   mus   my   mzn   na   nah   nap   nds   nds_nl   ne   new   ng   nl   nn   nov  

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu