On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Paradoxa de Russell - Viquipèdia

Paradoxa de Russell

De Viquipèdia

La paradoxa de Russell descrita per Bertrand Russell en 1901 demostra que la teoria original de conjunts formulada per Cantor i Frege és contradictòria.

Suposem un conjunt que consta de conceptes que no són membres de si mateixos. Un exemple descrit, és el conjunt que consta de "idees abstractes" és membre de si mateix perquè el conjunt és ell mateix una idea abstracta, mentre que un conjunt que consta de "llibres" no és membre de si mateix perquè el conjunt no és un llibre. En la seua paradoxa, Russell preguntava (en carta escrita a Frege en 1902), si el conjunt de conceptes que no formen part d'ells mateixos formen part de si mateix. Si no forma part de si mateix, pertanyen al tipus de conjunts que sí que formen part de si mateixos.

Anomenem M a "el conjunt de tots els conjunts que no es contenen a si mateixos com a membres". Llavors, M és un element de M si i només si M no és un element de M, la qual cosa és absurd.

Un desenvolupament mes formal és presenta en Teoria Intuïtiva de Conjunts.

La paradoxa de Russell ha sigut expressada en divers tèrmit mes quotidians, el mes conegut és la paradoxa del barber

«el barber d'aquesta ciutat, que afaita tots els homes que no s'afaiten a si mateixos, s'afaita a si mateix?»

[edita] Explicació de la Paradoxa

Els conjunts són reunions de coses, per exemple de cotxes, llibres, persones, etc... i en aquest sentit els anomenarem conjunts normals.

La característica principal d'un conjunt normal és que no és contenen a si mateixos.

Però també hi ha conjunts de conjunts, com 2M, que és el conjunt de subconjunts de M.

Un conjunt de conjunts és normal excepte si podem fer que és contingui a si mateix.

Això últim no és difícil, si tenim el conjunt de tots els coses que NO són llibres i com un conjunt no és un llibre, el conjunt de totes els coses que NO són llibres formarà part del conjunt de totes les coses que NO són llibres.

Aquests conjunts que és contenen a si mateixos s'anomenen conjunts singulars.

Està clar que un conjunt donat o be és normal o be és singular, no hi ha terme mitjà. O és conté a si mateix o no és conté.

Ara prenguem el conjunt C com el conjunt de tots els conjunts normals. Quina classe de conjunt és C? Normal o Singular?

Si és normal, estarà dins del conjunt de conjunts normals, que és C després ja no pot ser normal.

Si és singular, no pot estar dins del conjunt de conjunts normals, després no pot estar en C, però si no està en C llavors és normal.

Qualsevol alternativa ens produeix una contradicció, aquesta és la paradoxa.

[edita] Vegeu també

Static Wikipedia March 2008 on valeriodistefano.com

aa   ab   af   ak   als   am   an   ang   ar   arc   as   ast   av   ay   az   ba   bar   bat_smg   bcl   be   be_x_old   bg   bh   bi   bm   bn   bo   bpy   br   bs   bug   bxr   ca   cbk_zam   cdo   ce   ceb   ch   cho   chr   chy   co   cr   crh   cs   csb   cv   cy   da   en   eo   es   et   eu   fa   ff   fi   fiu_vro   fj   fo   fr   frp   fur   fy   ga   gd   gl   glk   gn   got   gu   gv   ha   hak   haw   he   hi   ho   hr   hsb   ht   hu   hy   hz   ia   id   ie   ig   ii   ik   ilo   io   is   it   iu   ja   jbo   jv   ka   kab   kg   ki   kj   kk   kl   km   kn   ko   kr   ks   ksh   ku   kv   kw   ky   la   lad   lb   lbe   lg   li   lij   lmo   ln   lo   lt   lv   map_bms   mg   mh   mi   mk   ml   mn   mo   mr   ms   mt   mus   my   mzn   na   nah   nap   nds   nds_nl   ne   new   ng   nl   nn   nov  

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu