Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Transition électronique

Transition électronique

Cet article est une ébauche concernant la physique quantique.
Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.
Consultez la liste des tâches à accomplir en page de discussion.

Les transitions électroniques décrivent le passage d'un électron d'un niveau d'énergie à un autre.

L'électron du niveau d'énergie E_0, excité par un rayonnement électromagnétique passe au niveau d'énergie supérieur E_1. Dans le cas le plus simple d'un atome d'hydrogène (un électron et un proton), l'électron est piégé dans le champ électrique créé par le proton. La mécanique quantique, à l'inverse de la mécanique classique, prévoit que l'électron ne peut alors exister que dans certains états quantiques d'énergie bien déterminés, on parle de quantification d'énergie. Que ce soit sous l'effet de la lumière, des collisions, d'une décharge électrique dans un gaz, etc., on ne peut donc assister qu'à des échanges d'énergie discrets entre l'atome et son environnement.

Ceci était particulièrement visible dans les spectres des lampes à décharge de la fin du XIXe siècle. Par exemple, les physiciens de cette époque ont regroupé les transitions de l'atome d'hydrogène qu'ils voyaient en différentes séries (dites de Lyman, Balmer, Paschen, Brackett, Pfund, et Humphreys, suivant le nom de la personne qui les avaient étudiées), tout d'abord sans comprendre pourquoi ces transitions répondaient à la formule empirique dite de Rydberg-Ritz

\frac{1}{\lambda}= \frac{E_1 - E_0}{h\,c}=R_{H}\,(1/m^{2}-1/n^{2})[1]. (h étant la constante de Planck, R_{H} la constante de Rydberg pour l'hydrogène, et m < n deux entiers strictement positifs)

Ces spectres ont grandement contribué à asseoir la mécanique quantique lorsqu'on se rendit compte que l'on observait là la transition électronique entre les niveaux n et m de l'atome.

Des systèmes quantiques plus complexes que les atomes, tels que les molécules ou les solides présentent également des transitions électroniques. Toutefois, il arrive que les états électroniques se couplent à d'autres états, par exemple des états de vibration de la molécule ou du réseau cristallin, et on ne peut alors plus parler de transition purement électronique.

Notes et références

  1. Beiser, Arthur - Concepts of Modern Physics (ISBN: 0-07-100-144-1)

Articles connexes

  • Portail de la physique
  • Portail du monde quantique
This article is issued from Wikipédia - version of the Thursday, January 01, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011