Lampada fluorescente
Da Wikipedia, l'enciclopedia libera.
La lampada fluorescente è un particolare tipo di lampada a scarica in cui l'emissione luminosa visibile è indiretta, ovvero non è emessa direttamente dal gas ionizzato, ma da un materiale fluorescente (da cui il nome).
Questo tipo di lampade sono erroneamente chiamate lampade al neon o tubi al neon, ma in realtà il funzionamento è dovuto alla presenza di vapori di mercurio e non al neon.
È costituita da un tubo di vetro, che può essere lineare, circolare o variamente sagomato, al cui interno è dapprima praticato il vuoto, poi introdotto un gas nobile (argo o neon) ed una piccola quantità di mercurio liquido, che si pone in equilibrio con il suo vapore. La superficie interna del tubo è rivestita di un materiale fluorescente, dall'aspetto di una polvere bianca. Ai due estremi del tubo sono presenti due elettrodi. Gli elettroni in movimento tra i due elettrodi eccitano gli atomi di mercurio, che sono a loro volta sollecitati ad emettere radiazione ultravioletta. Il fosforo di cui è ricoperto il tubo, investito da tali radiazioni, emette luce visibile. Una differente composizione del materiale fluorescente permette di produrre una luce più calda oppure più fredda.
Indice |
[modifica] Accensione
Gli elettrodi di un tubo fluorescente, al contrario di una lampada ad incandescenza non possono essere collegati direttamente alla rete elettrica perché per la sua caratteristica tensione-corrente, la lampada deve essere alimentata in limitazione di corrente. Per questo motivo si pone in serie alla lampada un dispositivo in grado di limitare la corrente, solitamente una induttanza, chiamata comunemente reattore, che permette in aggiunta di generare una sovratensione che agevola l'innesco, oppure in rarissimi casi si usa una resistenza.
Esistono due categorie di alimentatori: elettromagnetici ed elettronici.
[modifica] Alimentatore elettromagnetico
L’alimentatore tradizionale (o reattore) è quello elettromagnetico (induttivo), che è un componente passivo che ha due diverse funzioni: 1) durante la fase di accensione, in combinazione con lo starter, consente di ottenere una sovratensione che innesca la scarica nel gas; 2) nel funzionamento a regime esso funge da limitatore di corrente; ciò è importante perché, a scarica avvenuta, il tubo diviene un percorso a bassissima impedenza che potrebbe causare assorbimenti eccessivi.
Poiché il reattore è avvolto su nucleo di materiale ferromagnetico (laminato per limitare la dispersione di energia per riscaldamento da correnti parassite), durante il funzionamento regolare si originano delle vibrazioni alla frequenza di rete (50 Hz in Italia) che causano il caratteristico ronzio delle lampade fluorescenti.
La tensione di rete a 230 volt non è sufficiente per innescare a freddo la scarica, per cui occorrono circuiti ausiliari che intervengano all'accensione. Per questo gli elettrodi dei tubi sono spesso costituiti da un filamento con le due estremità riportate su contatti elettrici esterni. Un dispositivo, lo starter, alimenta i filamenti per breve tempo fino all'innesco della scarica. I filamenti incandescenti emettono elettroni avviando la ionizzazione del gas. Lo starter è sostanzialmente un interruttore in cui il contatto mobile è costituito da una lamina bimetallica che si deforma riscaldandosi. La sequenza di accensione del tubo è la seguente:
- inizialmente (starter freddo) il suo contatto interno è chiuso e i filamenti sono connessi in serie tra loro ed in serie al reattore.
- i filamenti si riscaldano ed emettono delle "nubi di elettroni" nel tubo;
- la stessa corrente che attraversa il circuito e lo starter provoca il riscaldamento della lamina bimetallica interna a quest'ultimo che dopo qualche istante si apre.
- L'apertura del circuito causata dallo starter provoca, per effetto dell'autoinduzione sul reattore, una sovratensione che favorisce ulteriormente l'innesco.
Un approccio alternativo consiste nel fornire al tubo una tensione elevata a migliaia di volt da un trasformatore. Si elimina la necessità di riscaldare i filamenti e si possono alimentare tubi molto lunghi.
Ogni alimentatore produce una corrente di scarica, che viene dispersa attraverso il conduttore di terra. La norma limita questa corrente ad un massimo di 0,5mA per apparecchio, ma in caso di comando di molte lampade fluorescenti bisogna tenerne conto nel dimensionamento della protezione differenziale.
Il funzionamento di tipo induttivo degli alimentatori elettromagnetici comporta un fattore di potenza basso, che raggiunge spesso valori tra 0,3 e 0,6. È necessario, quindi, installare un condensatore di rifasamento per riportare il fattore di potenza a 0,9.
[modifica] Alimentatore elettronico autoscillante
L’alimentatore elettronico autoscillante semplifica notevolmente la gestione delle lampade fluorescenti rispetto ad un alimentatore elettromagnetico. Grazie ad una tensione di innesco interna l’impiego dello starter diviene superfluo, inoltre non è necessario alcun rifasamento, poiché il fattore di potenza è già >0,95..
Gli apparecchi che montano un alimentatore elettronico consentono un funzionamento più economico, poiché necessitano di un assorbimento di potenza del sistema decisamente minore rispetto alle applicazioni tradizionali con alimentatori induttivi a parita di illuminazione.
Ad esempio, una lampada da 18W con alimentatore ferromagnetico in classe C richiede una potenza di circa 28W, mentre con alimentatore elettronico 19-20W. Il risparmio è evidente, bisogna tuttavia porre una certa attenzione nel dimensionamento dell’interruttore automatico di protezione. In un circuito composto da reattore induttivo/starter le lampade si accendono in tempi diversi, in uno con alimentatore elettronico tutte le lampade fluorescenti si inseriscono contemporaneamente. I condensatori antidisturbo contenuti nell’alimentatore generano un impulso di corrente elevato, che, anche se di durata estremamente breve, potrebbe far scattare l’interruttore automatico. Alcuni costruttori di alimentatori forniscono il numero massimo di alimentatori collegabili in funzione del tipo di interruttore di protezione utilizzato.
Molto diffuse sono anche lampade dette fluorescenti compatte a risparmio energetico, costituite da un tubo fluorescente di piccolo diametro abbinato ad un circuito elettronico di alimentazione. Il tutto è montato su uno zoccolo a vite simile a quello delle normali lampadine, al cui posto possono essere montate.
[modifica] Alimentatore elettronico a componenti integrati
Questo alimentatore utilizza circuiti integrati (compreso un oscillatore programmabile) per il controllo della lampada. Basandosi sul fatto che una lampada fluorescente richiede una tensione alternata con duty cycle 50% e il circuito di pilotaggio è un circuito risonante (L, C), è semplice generare una forma d'onda quadrata in ingresso a questo circuito. Il circuito risonante la trasforma in un'onda dall'andamento sinusoidale. Poiché un circuito costituito da una L e una C ha un picco di risonanza ad una frequenza ben definita, risulta chiaro che variando la frequenza della forma d'onda quadra creata ci si può avvicinare al picco di risonanza e pilotare la lampada con una tensione sempre più alta. Inoltre lavorando ad alte frequenze è possibile far scorrere nei catodi di lampada una corrente abbastanza bassa da non far accendere la lampada ma sufficiente per riscaldare i filamenti ed evitare che si danneggino all'accensione, aumentando così il tempo di vita della lampada.
Ecco come funziona, in breve, una lampada con circuito di controllo elettronico. Inizialmente la lampada viene alimentata con una forma d'onda sinusoidale (grazie al circuito risonante che riceve un'onda quadra in ingresso) ad alta frequenza (es. 70kHz) e una piccola corrente scalda i filamenti per circa 1 secondo. Poi la frequenza viene abbassata (35kHz) in un tempo pari a qualche decina di millisecondi finché non si arriva molto vicino al picco di risonanza dove la tensione raggiunge qualche kV. La scarica nel gas presente nella lampada la fa accendere, la curva di risonanza si modifica, perché la lampada accesa costituisce un carico diverso, e la tensione si stabilizza intorno ai 100V. A questo punto si può facilmente variare l'intensità luminosa aumentando la frequenza della forma d'onda di controllo. Generalmente tutto questo viene ottenuto con un circuito integrato che può essere nascosto facilmente nella base delle lampade compatte, le cosiddette CFL.
[modifica] Caratteristiche di funzionamento
Le lampade fluorescenti hanno una vita media molto maggiore rispetto a quelle a incandescenza, ma la loro durata può essere fortemente influenzata dal numero di accensioni e spegnimenti, a meno che non si usi un pilotaggio elettronico: ognuna di queste operazioni, infatti, riduce la vita della lampada, a causa dell’usura subita dagli elettrodi. Il valore che viene fornito dalle aziende produttrici è generalmente calcolato con cicli di accensione di 8 ore, e va dalle 12-15000 ore delle lampade tubolari alle 5-6000 ore delle lampade compatte.
Il pilotaggio elettronico, invece, grazie al preriscaldo dei catodi (elettrodi), che ne evita il danneggiamento, consentono un numero di accensioni praticamente infinito (oltre 60000) e la precisione del controllo ne estende la vita ad almeno 10000 ore. A differenza delle lampade a incandescenza, queste lampade perdono leggermente in quantità di flusso luminoso emesso nel corso del tempo, inoltre per i modelli meno recenti (generalmente senza preriscaldo) di lampade compatte possono impiegare generalmente qualche minuto per arrivare al massimo di emissione possibile dopo l’accensione.
[modifica] Precauzioni
Le lampade fluorescenti contengono mercurio che è estremamente inquinante. Dopo l'uso devono essere smaltite in maniera differenziata tra i materiali RAEE e non con il vetro.
[modifica] Voci correlate
![]() |
Elettrotecnica | Ingegneria elettrica | ![]() |
|
|||
|
|||
|