On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Théorème des quatre couleurs

Théorème des quatre couleurs

Vitrail coloré avec quatre couleurs
Carte du monde colorée à l'aide du théorème des 4 couleurs, y compris les océans. Par conséquent les mers intérieures peuvent ne pas être bleues et les pays enclavés peuvent être bleus, tout comme les exclaves d'un pays peuvent être de couleur différente du pays.

Le théorème des quatre couleurs indique qu'il est possible, en n'utilisant que quatre couleurs différentes, de colorer[1] n'importe quelle carte découpée en régions connexes, de sorte que deux régions adjacentes (ou limitrophes), c'est-à-dire ayant toute une frontière (et non simplement un point) en commun reçoivent toujours deux couleurs distinctes. L'énoncé peut varier et concerner, de manière tout à fait équivalente, la coloration des faces d'un polyèdre, ou des sommets d'un graphe planaire.

Trivialement, chacune des régions doit recevoir une couleur différente si les régions sont deux à deux adjacentes ; c'est le cas par exemple de la Belgique, du Luxembourg, de l'Allemagne et de la France dans une carte politique de l'Europe, d'où la nécessité des quatre couleurs dans le cas général. Par ailleurs, il ne peut exister cinq régions connexes deux à deux adjacentes (c'est la partie facile du théorème de Kuratowski).

Lorsqu'on généralise le problème à un graphe quelconque, il devient NP-complet de déterminer s'il est coloriable avec seulement quatre couleurs (ou même trois).

Histoire

Le résultat fut conjecturé en 1852 par Francis Guthrie, intéressé par la coloration de la carte des régions d'Angleterre. La première mention publiée date toutefois de 1879[2]. Deux premières démonstrations furent publiées, respectivement par Alfred Kempe en 1879 et Peter Guthrie Tait en 1880. Mais elles se révélèrent erronées ; les erreurs ont été relevées seulement en 1890 par Percy Heawood et en 1891 par Julius Petersen.

Si la preuve de Kempe s'est révélée fausse, elle fournit cependant une démonstration d'un problème analogue, avec cinq couleurs au lieu de quatre, aujourd'hui connu sous le nom du théorème des cinq couleurs (de)[3].

Dans les années 1960 et 1970, Heinrich Heesch s'intéresse à la possibilité de prouver informatiquement le théorème des quatre couleurs. Finalement, en 1976, deux Américains, Kenneth Appel et Wolfgang Haken, affirment avoir démontré le théorème des quatre couleurs[4]. Leur démonstration partage la communauté scientifique : pour la première fois, en effet, la démonstration exige l'usage de l'ordinateur pour étudier les 1478 cas critiques (plus de 1200 heures de calcul). Le problème de la démonstration du théorème se trouve alors déplacé vers le problème de la validation :

  • d'une part de l'algorithme d'exploration,
  • d'autre part de sa réalisation sous forme de programme.

Depuis 1976, l'algorithme d'Appel et Haken a été repris et simplifié par Robertson, Sanders (en), Seymour et Thomas[5]. D'autres programmes informatiques, écrits de façon indépendante du premier, aboutissent au même résultat. Il existe ainsi depuis 2005 une version entièrement formalisée, formulée avec Coq par Georges Gonthier et Benjamin Werner, qui permet à un ordinateur de complètement vérifier le théorème des quatre couleurs.

Paul Erdős suggère que le théorème des quatre couleurs est « un problème subtil et non pas un problème complexe ». D'après lui, une démonstration simple, et même très simple, devrait exister. Mais pour cela, il conviendrait peut-être de « compliquer le problème », en le formulant pour un ensemble de points plus vaste qu'un graphe planaire, et incluant celui-ci.

En 2015, aucune preuve qui ne fasse pas appel à l'ordinateur n'a été découverte ; cependant, de nombreux amateurs continuent à être convaincus de l'avoir démontré, et Underwood Dudley consacre un chapitre de Mathematical Cranks à ces tentatives, dont un exemple, moins absurde que beaucoup d'autres, est celle de George Spencer-Brown (de), déposée en 1980[6], mais qui n'a jamais été acceptée.

Généralisations du théorème des quatre couleurs

Classes de graphes plus générales que les graphes planaires

On voit que l'énoncé classique du théorème des quatre couleurs n'est bien sûr pas une caractérisation des graphes dont le nombre chromatique est inférieur ou égale à quatre puisque le graphe K_{3,3} n'est pas planaire mais est biparti. D'autre part, pour des raisons de complexité algorithmique, il ne peut exister de caractérisation simple des graphes k-colorables pour k fixé supérieur ou égal à trois. Le théorème des quatre couleurs se généralise aux graphes sans mineur K_5, puisque le nombre chromatique de ces graphes vaut au plus quatre (et c'est une des motivations de la conjecture de Hadwiger). Une généralisation plus forte encore a été donnée récemment par Guenin :

  • les graphes sans mineur impair K_5 sont colorables avec seulement quatre couleurs.
(Un mineur est dit impair si les opérations de contractions des arêtes s'effectuent uniquement sur une coupe du graphe. Un graphe contient un mineur impair K_5 s'il contient un K_5 dont on a remplacé les dix arêtes par dix chemins de longueur impairs.)

Ces résultats plus forts sont basés sur des preuves utilisant le théorème des quatre couleurs lui-même, par conséquent ils n'en apportent pas de nouvelle démonstration.

Surfaces plus générales que le plan

En collant les bords marqués de flèches doubles pour former un cylindre, puis les bords marqués de flèches simples, on obtient un tore avec sept régions se touchant six à six ; ainsi, sept couleurs sont nécessaires
Résultat du collage précédent.

On peut aussi considérer le problème du coloriage de cartes tracées sur des surfaces autres que le plan. Sur la sphère, le problème est le même (pour le voir, il suffit de retirer un point de la sphère intérieur à l'une des régions, et d'effectuer une projection stéréographique).

En 1890, Heawood démontra que pour une surface « fermée » (c'est-à-dire compacte, connexe et sans bord) non homéomorphe à la sphère, le nombre de couleurs nécessaires est toujours majoré, en fonction de la caractéristique d'Euler χ de la surface, par

p:=\left\lfloor\frac{7 + \sqrt{49 - 24 \chi}}{2}\right\rfloor

(où les crochets extérieurs désignent la fonction partie entière) et conjectura que ce majorant était optimal.

(Le théorème des quatre couleurs est l'extension à la sphère de sa majoration, puisqu'alors, χ = 2 donc p = 4.)

Par exemple, le tore a une caractéristique d'Euler χ = 0 donc p = 7 ; 7 couleurs suffisent donc pour colorer n'importe quelle carte sur le tore, et l'exemple de la figure montre que cela peut être nécessaire.

En 1934, Philip Franklin (en) réfuta la conjecture de Heawood en montrant que pour la bouteille de Klein, 6 couleurs suffisent toujours, alors que, comme pour le tore, χ = 0 donc p = 7 (il exhiba de plus une carte pour laquelle 6 couleurs sont nécessaires). Mais en 1968, Ringel et Youngs (de) montrèrent que la conjecture est vraie pour toute autre surface fermée, c'est-à-dire qu'il existe une carte tracée sur cette surface pour laquelle p couleurs sont nécessaires.

Il n'y a pas de généralisation dans l'espace car n boudins assez longs peuvent toujours être disposés de telle façon que chacun touche tous les autres — ce qui rend supérieur à n le nombre de couleurs nécessaires — et n peut être choisi aussi grand qu'on veut.

Conséquences

Algorithmiques

Déterminer si un graphe peut être ou non coloré en deux couleurs est très facile : techniquement, il suffit de colorer arbitrairement un sommet de chaque composante connexe avec une couleur et ensuite de propager cette décision en colorant les sommets voisins avec l'autre couleur et ainsi de suite. Si l'on rencontre un sommet encore non coloré voisins de deux sommets de couleur différentes alors le graphe ne peut être biparti. C'est un problème soluble en temps polynomial.

En revanche, déterminer si un graphe peut être ou non coloré en k couleurs pour k > 2 est un problème NP-complet. La preuve de Appel et Haken donne un algorithme pour colorer tout graphe planaire avec quatre couleurs en temps quadratique (la 3-coloration des graphes planaires étant NP-complet).

Pratiques

D’autres problèmes plus pratiques peuvent se réduire à la résolution de coloration de graphe, la solution peut alors être appliquée pour améliorer l'organisation de tâches.

  • Affecter des fréquences différentes à des cellules voisines dans un réseau de téléphone mobile GSM.
  • Organiser un examen suivant les matières que doit passer chaque étudiant. Comment mettre en parallèle plusieurs épreuves sans léser un candidat ?
  • Optimiser l'utilisation des machines de travail. Comment mettre en parallèle des fabrications utilisant plusieurs machines ?
  • Problème d'incompatibilité. Comment faire cohabiter des personnes ou des animaux en tenant compte de leur incompatibilité ?
  • La résolution du Sudoku peut se ramener à un problème de coloration de graphe.

Cas du coloriage de cartes

S'agissant du coloriage des cartes elles-mêmes, le théorème a en fait un intérêt limité. Par exemple, si on souhaite dessiner une carte du monde en attribuant des couleurs différentes aux pays limitrophes :

  • D'une part, on sera gêné par la présence de la mer. Soit il faut lui attribuer une couleur comme si c'était un pays — mais ce serait trompeur — soit il faut lui réserver une couleur supplémentaire.
  • D'autre part, le théorème parle bien de régions connexes. L'enclave de Llivia, l'enclave des Papes-Pays de Grignan et l'oblast de Kaliningrad suffisent à montrer que ce n'est pas forcément le cas des pays.

Bibliographie

  • Georges Gonthier (enseignant à Polytechnique), Le théorème des quatre couleurs (lire en ligne)
  • George Gonthier A computer-checked proof of the Four Colour Theorem

Notes et références

  1. En théorie des graphes, on parle de coloration de graphe et non de coloriage de graphe on dira donc colorer et non colorier (cf. mathscyr.free.fr).
  2. (en) Arthur Cayley, « On the colourings of maps », Proc. Royal Geographical Society, vol. 1, 1879, p. 259-261.
  3. Gonthier 2000.
  4. (en) Kenneth Appel et Wolfgang Haken, « Every planar map is four colorable, Part I: Discharging », Illinois J. Math., vol. 21, , p. 429-490 (lire en ligne).
  5. On trouvera un rappel de l'historique du théorème et une version détaillée de leur algorithme (présentée sous forme d'un travail informatique guidé) dans Gonthier 2000.
  6. Sa preuve peut être lue dans (en) George Spencer-Brown, Laws of Form (en), Lübeck, 1997, Appendix 5.

Liens externes

  • (en) Eric W. Weisstein, « Heawood Conjecture », MathWorld
  • (en) Eric W. Weisstein, « Map Coloring », MathWorld
  • Portail des mathématiques
This article is issued from Wikipédia - version of the Friday, October 02, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu