Web Analytics Made Easy - Statcounter
Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Histologie

Histologie

Cet article est une ébauche concernant la biologie et la médecine.
Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.
Consultez la liste des tâches à accomplir en page de discussion.

L’histologie (du grec ancien ἱστός tissu et λόγος discours), autrefois appelée anatomie microscopique[1],[2], est la branche de la biologie et de la médecine qui étudie les tissus biologiques. Elle se situe au carrefour de la biologie cellulaire, l'anatomie, la biochimie et la physiologie. Elle a pour but d’explorer la structure des organismes vivants, les rapports constitutifs et fonctionnels entre leurs éléments fonctionnels, ainsi que le renouvellement des tissus. Elle participe à l'exploration des processus pathologiques et de leurs effets.

Histoire

C'est l'italien Marcello Malpighi, professeur de médecine à Bologne et à Pise qui est considéré comme le fondateur de l'histologie, au XVIIe siècle. L'histologie fut d'abord empirique, grâce au perfectionnement de microscopes simples, alors récemment inventés, permettant l'étude de coupes minces.

La notion de tissu biologique est due à Xavier Bichat, en 1799, grâce à son ouvrage Traité des membranes en général et de diverses membranes en particulier. On définit alors un tissu comme un ensemble de cellules ayant des caractères morphologiques analogues. Leur classification est alors simple :

  • les tissus épithéliaux ;
  • le tissu musculaire ;
  • le tissu nerveux ;
  • le tissu conjonctif.

Ces premières études ont conduit à établir une grande quantité d'information sur les structures biologiques, ce qui a permis l'élaboration de la théorie cellulaire en 1838, par Matthias Jakob Schleiden et Theodor Schwann. Le terme d'histologie fut utilisé pour la première fois par Mayer et Heusinger en 1819.

Les techniques de biologie cellulaire, de biologie moléculaire, de clonage et de génétique moléculaire ont permis de mieux comprendre le fonctionnement cellulaire et les interactions cellulaires. Ainsi, si la cellule constitue bien l'unité fondamentale de la structure des organismes vivants, elle se révèle être un ensemble incroyablement sophistiqué et complexe. L'histologie moderne considère ainsi la cellule comme une unité fonctionnelle fondamentale.

Techniques histologiques

Il existe de nombreuses techniques histologiques.

Prélèvements

Les prélèvements, quels qu'ils soient doivent être effectués avec le plus grand soin, car leur qualité conditionne directement les possibilités d'étude.

  • Pour les tissus végétaux, le prélèvement utilise des méthodes particulières (écrasement, empreinte par vernis etc.)
  • Pour des tissus animaux (et notamment humains), on distingue quatre catégories majeures de prélèvement :
    • les frottis : prélèvement médical au moyen d'un écouvillon stérile, d'une petite brosse ou d'une petite spatule (par exemple au niveau du col de l'utérus) ;
    • les biopsies : prélèvement de très petite taille d'un tissu, à des fins d'étude microscopique ;
    • les résections d'organes en intégralité, suivies de leur étude (dans le cas d'une tumeur, déterminer le caractère bénin ou malin par exemple) ;
    • les ponctions de liquides (pleurale, ascitique, péricardique, etc.)

Il existe également des techniques de prélèvement plus sophistiquées : par excision, microdissection. Des prélèvements sont fréquemment réalisés au cours d'une opération, et sont étudiés directement au bloc opératoire en extemporané par cryostat.

Conservation

Afin de conserver l'échantillon dans un état le plus proche possible de l'état in vivo, deux moyens de conservation peuvent être utilisés :

  • La congélation, utilisée pour les prélèvements en salle d'opération dont le diagnostic doit être connu rapidement (examen extemporané);
  • La fixation par un produit chimique comme le formol ou le liquide de Bouin), qui a pour effet de polymériser les protéines et, dans certains cas, les lipides présents dans l'organe. Cette technique est utilisée pour les coupes histologiques "longues durées" après inclusion en paraffine.

Amincissements

Inclusion d'un bloc en OCT (Optimal Cutting Temperature compound). Cette méthode permet de durcir les échantillons à -20°C tout en conservant les ultrastructures cellulaires et nucléaires. On la préconise pour faire des manipulations d'immunohistochimie et d'hybridation in situ. [3]

Les organes, trop gros pour laisser passer la lumière nécessaire à la microscopie optique, doivent encore être découpés en lamelles extrêmement fines par un appareil appelé microtome. Pour cela, on les enrobe dans de la paraffine ou une résine, selon l'épaisseur souhaitée de la coupe. On distingue plusieurs types de coupe selon la méthode de conservation et d'amincissement suivie :

Conservation Inclusion Épaisseur de la coupe
Congélation (à -20 °C) OCT 5 à 100 μm
Polymérisation des protéines Paraffine 5 μm
Polymérisation des protéines et lipides Résine 1 à 0,05 μm

Les coupes de 0,05 μm seront analysées en microscopie électronique tandis que les autres seront observées en microscopie optique.

Coloration

Exemple de coloration en microscopie optique: Coloration au Carmin d'un Monogène (ver parasite)

Les tissus biologiques présentent en eux-mêmes très peu de contraste, aussi bien en microscopie optique qu’en microscopie électronique. La coloration est utilisée aussi bien pour augmenter le contraste que pour mettre en valeur l’une ou l’autre structure en particulier.

Colorations empiriques

De nombreuses techniques de coloration ont été découvertes de façon fortuite. Dans un certain nombre de cas, le lien spécifique entre la coloration et la nature du tissu n’est toujours pas connu actuellement (charges ioniques des molécules du colorant, taille des molécules du colorant ?). Parmi ces techniques, on peut citer les trichomes et la méthode de Van Gieson (hématoxiline ferrique, acide picrique, fuchsine acide).

Histochimie

On parle d’histochimie quand la coloration se fonde sur des réactions chimiques connues entre des réactifs de laboratoire et des composants des tissus étudiés. Par exemple lors d’une coloration à l’hématoxiline-éosine, l’éosine qui est un acide se fixe préférentiellement aux molécules basiques et permet donc de colorer le cytoplasme cellulaire (végétal ou animal), alors que l’hématoxiline, qui est une base, colore les noyaux cellulaires en se fixant préférentiellement aux acides nucléiques. La coloration par le Periodic Acid-Shiff (PAS) permet de colorer de nombreux glucides par rupture des ponts Carbone-Carbone des 1,2-glycols par l’acide périodique qui est un agent oxydant. La rupture de ces ponts produit des dialdéhydes qui réagissent avec le réactif de Shiff (fuchsine, acide sulfurique) pour donner un composé magenta vif.

Histochimie enzymatique

La distribution tissulaire de certaines enzymes spécifiques peut-être étudiée sur des coupes fraîches en y ajoutant un substrat spécifique de cet enzyme. L’enzyme réagit alors avec ce substrat pour former un produit de réaction primaire, insoluble et pouvant être mis en évidence par une coloration appliquée d’emblée ou dans un second temps. La plupart des systèmes enzymatiques étant détruits lors de la fixation, les méthodes d’histochimie enzymatique sont le plus souvent réalisées sur coupes en congélation. Ces techniques permettent de détecter un grand nombre d’enzymes s’exprimant de façon pathologique dans certains tissus.

Historadiographie

Les échantillons de tissus peuvent être colorés par des techniques radiographiques. Les deux usages les plus courants sont le marquage des cellules en phase S de la mitose par incorporation lors de la réplication de l'ADN de thymidine tritiée et l’hybridation in-situ. Le marquage peut être révélé par visualisation sur microscope à fond noir des grains d’argents formés par réaction du rayonnement radioactif sur une plaque photographique. Cette technique tend à être remplacée par l’immunohistochimie.

Immunohistochimie

Des anticorps spécifiques sont utilisés pour venir se fixer à une molécule de la coupe histologique. Ces anticorps polyclonaux, produits chez l’animal à partir de la protéine purifiée, seront porteurs d’un marqueur, le plus souvent fluorescent. On parle alors d’immunofluorescence. Cette technique tend à faire disparaître l’historadiographie. Les échantillons sont alors examinés sous microscope à fluorescence.

Classification des tissus en histologie

Notion de tissus, d'organes et de systèmes.

Actuellement, la classification cellulaire repose sur le regroupement des cellules sur la base de leur fonction principale. Ci-dessous, est exposée la classification fonctionnelle des cellules animales.

Un tissu est un ensemble de cellules organisées de manière spécifique. Un assemblage de cellules ayant toutes la même structure forme un tissu simple. Dans la majorité des cas, on observe un mélange de différentes cellules et de matrice extracellulaire. Ceci forme un tissu composé.

Les tissus forment ensemble des organes, prenant place dans un appareil (ou système). Un organe est donc un groupe anatomiquement distinct de tissus de plusieurs types, qui remplissent des fonctions spécifiques. Un appareil est un groupe de cellules ou d'organes qui ont des fonctions analogues ou proches.

Groupe de cellules Cellules épithéliales Cellules de soutien Cellules contractiles Cellules nerveuses Cellules germinales Cellules sanguines Cellules immunitaires Cellules endocrines
Exemple Épithélium cutané. Endothélium vasculaire Tissus conjonctif de soutien. Cartilage. Tissus osseux Muscle Système nerveux central. Système nerveux périphérique Spermatozoïdes. Ovocytes Globules rouges. Globules blancs Tissus lymphoïdes. Tonsilles. Pulpe Blanche splénique Thyroïde. Surrénale. Pancréas endocrine.
Fonction Barrière, absorption, sécrétion Maintien de la structure de l'organisme Mouvements Communication cellulaire directe Reproduction Transport de l'oxygène, défense de l'organisme Défense de l'organisme Communication cellulaire indirecte

Notes et références

  1. Définitions lexicographiques et étymologiques de « histologie » du Trésor de la langue française informatisé, sur le site du Centre national de ressources textuelles et lexicales
  2. Louis Mandl, Anatomie microscopique : Histologie, ou recherches sur les éléments microscopiques de Tissus, des organes et des liquides, dans les animaux adultes et à l'état normal, Baillière, 1857, 100 p.
  3. « Triming, inclusion d'un bloc en OCT », sur www.histalim.com, (consulté le 13 mars 2015)

Voir aussi

Liens externes

  • (en) Hitology learning System
  • Cours d'histologie
  • Images d'histologie
  • Portail de la médecine
  • Portail de la biologie
This article is issued from Wikipédia - version of the Monday, September 28, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011