Web Analytics Made Easy - Statcounter
Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Climatisation

Climatisation

Page d'aide sur l'homonymie Pour les articles homonymes, voir Clim.

La climatisation est la technique qui consiste à modifier, contrôler et réguler les conditions climatiques (température, humidité, niveau de poussières, etc.) d’un local pour des raisons de confort (bureaux, maisons individuelles) ou pour des raisons techniques (laboratoires médicaux, locaux de fabrication de composants électroniques, blocs opératoires, salles informatiques).

Les principales caractéristiques modifiées, contrôlées ou régulées sont :

  • le degré de pollution de l'air ambiant (local à traiter) : renouvellement, soit par extraction forcée de l’air hors du local, soit par introduction forcée d'air neuf (air extérieur) dans le local, soit par renouvellement partiel de l'air ambiant pollué (ajout d'un caisson de mélange), ou tout simplement un filtre à poussière.
  • la température de l'air : modification en fonction des saisons (chauffage ou refroidissement),
  • le degré d'hygrométrie de l’air traité : humidification ou déshumidification,
  • la teneur en poussières de l’air : traitement par filtration de l'air soufflé ou repris,
  • le maintien permanent des conditions intérieures (la régulation).

Alors que le chauffage et l'élévation du degré d'humidité relèvent de techniques maitrisées depuis longtemps, réfrigérer et déshumidifier l'air nécessitent des techniques mises en œuvre plus récemment (invention du réfrigérateur au XIXe siècle). Les systèmes modernes se trouvent de plus en plus associés dans un même appareil : le climatiseur réversible (réfrigération l'été et chauffage l'hiver).

Module externe d'un climatiseur à air
Module de climatiseur sur un toit

Histoire

Dès le XVIe siècle des systèmes naturels de rafraîchissement, obtenus par ruissellement d'eau, provoquant ainsi par évaporation une diminution de la température d'air. Les Romains utilisaient un tunnel souterrain d'apport d'air extérieur qui était un vrai climatiseur puisque l'air entrant dans la maison était assez invariablement autour de 10-12 °C hiver comme été.

XVIIIe siècle

Dès la fin du XVIIIe siècle, des réseaux de climatisation sont créées avec des blocs de glace intégrés à même les réseaux avec ventilation forcée. Avant l'invention des réfrigérateurs, on stockait la glace découpée l'hiver sur les étangs, dans une glacière. Il s'agissait d'un trou fermé par un couvercle isolant dans lequel on alternait des couches de paille, ou de sciure de bois, et de glace. Comme l'air froid descend et que la chaleur monte, l'orifice de remplissage se situant en haut, la température basse se maintenait et une partie de la glace, ainsi stockée, se conservait jusqu'à l'été.La notion de confort d'été est encore bien ancienne avec des conceptions architecturales privilégiant des courants d'air et protégeant de la chaleur les zones en ensoleillement direct.

En 1755, l’écossais William Cullen obtient un peu de glace par vapeur d’eau sous "cloche à vide".

XIXe siècle

En 1850, Ferdinand Carré invente le réfrigérateur à eau et ammoniac.

Mais la première véritable tentative d'utilisation industrielle de la réfrigération date de 1851 lorsque James Harrison, un imprimeur écossais, émigré en Australie, a acheté une entreprise de presse. Alors qu'il nettoyait des caractères à l'éther, il remarqua que le liquide refroidissait fortement le métal en s'évaporant. Harrison eut l'idée de comprimer l'éther gazeux avec une pompe pour le transformer en liquide, puis de laisser l'éther liquide revenir à l'état gazeux en provoquant un refroidissement. Il mit ce système en œuvre dans une brasserie australienne où le gaz froid d'éther était pompé dans des tuyaux qui circulaient dans le bâtiment. Harrison utilisa le même principe pour fabriquer de la glace en faisant passer dans de l'eau les tuyaux refroidis par l'éther gazeux. Mais il fit faillite en 1860 car la glace naturelle qu'on importait par bateau d'Amérique restait moins chère.

Un peu plus tard la technologie avançant on se mit à fabriquer des systèmes simples de refroidissement fonctionnant avec des compresseurs à piston (comme nos réfrigérateurs actuels) principalement dans les transports maritimes, ces derniers fonctionnaient avec de l'éther qui fut remplacé par la suite par de l'ammoniac qui permettait d'avoir un meilleur rendement.

XXe siècle

La climatisation moderne a été inventée par Willis H. Carrier en 1902.

Willis Carrier invente le premier système de réfrigération centrifuge, doté d’un compresseur central permettant de réduire la taille de l’appareil. Il ne sera dévoilé au public qu’en 1925 quand M. Carrier va persuader la Paramount de l’installer lors de la construction de la salle de spectacle Rivoli Theater à Times Square. La légende dit que les blockbuster de l’été datent de cette époque car les newyorkais dès lors s’installeront dans les salles de cinéma climatisées durant les chaudes journées d’été.

Fonctionnement et utilisation

Articles détaillés : pompe à chaleur, froid industriel et Climatisation solaire.

La climatisation est un mode de confort thermique adapté lorsque la température extérieure est élevée. En été et en intersaisons, le besoin de climatisation est dû aux apports externes (solaire notamment) mais également aux apports internes (nombre important d'occupants, exemple salle de réunion, appareils électriques tels que l'éclairage, la micro-informatique, ...). La climatisation apporte le confort thermique d'été, d'intersaisons, mais également en hiver par utilisation du même système pour chauffer les locaux. Le confort en hygrométrie est également pris en compte pour apporter une humidité ambiante contrôlée par les actions d'humidification et de déshumidification. Une climatisation est essentiellement une pompe à chaleur d'une taille adaptée à l'usage.

Systèmes

Le principe de fonctionnement d'un climatiseur est expliqué sur le schéma suivant :

Un système de climatisation doit non seulement contrer les charges thermiques et hydriques d'un local, mais il doit aussi assurer la qualité de l'air par le renouvellement d'air neuf hygiénique (maintien de la teneur en CO2 et des odeurs à un niveau acceptable défini par les normes en vigueur), et bien sûr la filtration de l'air soufflé.

  • Les charges thermiques sont les apports ou les déperditions de chaleur externes et internes qui sont exprimés en kilowatts [kW],
  • Les charges hydriques sont généralement des apports d'humidité internes exprimés quant à eux en kilowatts [kW] ou en kilogrammes par heure (débit massique).

Les différents systèmes de climatisation

Il existe dans le domaine du génie climatique plusieurs types de systèmes que l'on peut classer en trois catégories :

  • les centrales unizones (voir exemple ci-dessus),
  • les centrales multizones,
  • les systèmes autonomes, triomes

Le renouvellement d'air

Il existe plusieurs solutions technologiques concernant le renouvellement de l'air au sein d'un local :

  1. L'air neuf(aux conditions extérieures) est mélangé avec une partie de l'air repris du local par le biais d'un caisson de mélange (voir schéma ci-dessus),
  2. L'air neuf est préparé aux conditions spécifiques du local (température, hygrométrie) par une autre centrale, appelé généralement centrale de traitement d'air neuf.

Les systèmes tout air

Dans ce type de système, afin d'éviter que l'air extérieur ne vienne polluer celui du local, on augmente légèrement la pression intérieure par rapport à la pression atmosphérique. L'intérêt du caisson de mélange est de réaliser des économies importantes d'énergies (respect de l'environnement).

On a donc dans ce cas un débit massique d'air soufflé supérieur au débit massique d'air repris.

Ce type de procédé est généralement utilisé dans les bureaux, les salles de cinéma, ...

Systèmes utilisés en recyclage total

Dans ce type de procédé, le renouvellement d'air neuf sera obtenu soit par un système de ventilation mécanique contrôlée ou le mélange d'air s'effectuera directement dans le local, soit l'air neuf sera préparé dans une centrale dite "centrale d'air neuf". Cet air est directement soufflé aux conditions intérieures du local. Un circuit d'air neuf particulier assure le renouvellement d'air neuf, et on aura un débit d'air rejeté égal au débit d'air neuf apporté.

Système fonctionnant en tout air neuf

Dans ce type de procédé, il n'y a pas de recyclage de l'air du local. En fonction du type de local il sera soit en surpression afin d'éviter toute pollution de l'air intérieur (blocs opératoires, laboratoires de produits pharmaceutiques, ...), soit à la pression atmosphérique.

L'inconvénient de ce type d'installation est qu'il est générateur de puissances thermiques très élevées, donc peu économiques. Toutefois, afin de diminuer les coûts énergétiques, on peut installer un récupérateur de chaleur (à plaques par exemple) sur ces centrales.

Système fonctionnant avec récupérateur d'énergie

En mode "froid" l'air neuf (qui vient de l'extérieur) plus chaud cède une partie de sa chaleur (un échangeur n'est pas parfait) à l'air usé à travers un échangeur (air/air) ce qui lui permet d'abaisser sa température et ainsi économiser l'énergie à fournir au système de climatisation. À l'inverse quand le système passe en mode "chaud" l'air chaud qui est expulsé vers l'extérieur réchauffe l'air neuf avant d'entrer dans l'espace climatisé ce qui permet des économies aussi comme dans certain systèmes de ventilation classique.Cet échangeur est communément appelé "caisson double flux".

Conditions de base

Dans une cour ou un environnement fermé ou peu aéré, par temps chaud, les climatiseurs peuvent créer une bulle de chaleur auto-entretenue, contribuant au phénomène d'îlot de chaleur urbain

Avant d'installer un système de climatisation, il est important de définir les apports de chaleur et d'humidité intérieures et extérieures.

Définition des conditions extérieures

Ces valeurs dépendent de la saison et de la situation géographique où seront situés les locaux à climatiser. Les données météorologiques déjà classifiées permettront de fixer les températures sèches et les températures humides. Ces données vont nous permettre de calculer les puissances maximales à mettre en œuvre dans nos locaux.

Définition des conditions intérieures

Les températures et hygrométries intérieures dépendent du type de local.

  • pour les locaux comme les habitations individuelles, les bureaux, les grands magasins, ... (climatisation dite de « confort »), la température et l'hygrométrie dépendront des saisons, mais aussi de la quantité d’élément qui peuvent dégager de l'humidité (nombre de clients, salades, légumes, etc).
  • pour les locaux de types industriels, la température et l'hygrométrie dépendront de l'usage que l'on fait des locaux. Elles peuvent rester constantes toute l'année (local informatique ou laboratoire métrologique par exemple) mais aussi varier (cuisson discontinu dans une conserverie).

Charges d'un local

Lors de l'étude d'un projet de climatisation, il est important afin de pouvoir dimensionner correctement la centrale de traitement d'air, d'étudier au préalable les charges que devra supporter la centrale. Il faudra tenir compte des charges dites sensibles et des charges dites latentes.

Charges sensibles

Les charges sensibles venant de l'extérieur sont positives en été (à cause de l’ensoleillement, par exemple) et négatives en hiver (à cause des déperditions).

Les charges sensibles venant de l'intérieur du local proviennent essentiellement

  • des machines à l'intérieur du local,
  • de l'éclairage.
  • des tuyauteries

Charges latentes

Les apports de chaleur latente (dégagement d'humidité sous forme de vapeur d'eau) viennent essentiellement :

  • des locaux (comme les piscines par exemple),
  • du matériel à l'intérieur des locaux (convoyeur d’épinard dans une conserverie),
  • des occupants (humidité).

Charges hydriques

La relation mathématique suivante donne les charges hydriques nommé [øL] :

  • øL = M × Lv [kW]
    • M = masse d'eau dégagée par heure
    • Lv = chaleur latente de vaporisation de l'eau.

Charges totales

Les charges totales sont la somme algébrique des charges sensibles et latentes nommé [øT]. Elle peut être positive ou négative et est donnée par la relation mathématique suivante :

  • øT = øS + øL [kW]

Bilan énergétique d'un local

Si la température et l'hygrométrie du local sont constantes, le bilan énergétique de celui-ci peut être expliqué de la façon suivante :

  1. La puissance apportée au local (air soufflé et apports internes) est égale à la puissance perdue par celui-ci (air repris ou perdu)
  2. L'humidité apportée au local par l'air soufflé et les apports d'humidités intérieur est égale à l'humidité perdue sous forme de condensation ou d'extraction d'air.

Bilan enthalpique

Pour cela on supposera que le débit massique d'air sec soufflé est égal au débit massique d'air repris :

  • øair soufflé = øair repris

La puissance apportée au local est la somme de la puissance apportée par l'air dans le local, c'est-à-dire à øT (voir au chapitre précédent).

  • øT= qmas × has-harp

Sachant cela, on peut déterminer les conditions de soufflage.

Conditions de soufflage

Pour déterminer les conditions de soufflage de l'air dans un local, il faut connaître :

  • le débit massique d'air sec au soufflage (qmas [kgas/s],
  • le taux de brassage τ , (le taux de brassage est le rapport entre le débit d'air soufflé et le volume du local traité, sa connaissance n'est donc pas nécessaire lors ce que le débit d'air soufflé est connu, il faut être prudent avec cette notion car le taux de brassage est un résultat de calcul et non une valeur dimensionnante, néanmoins, le taux de brassage est utile pour évaluer le confort à obtenir et la stratification de l'air chaud).
  • l'écart de température Δθ entre le soufflage et le local,
  • le point de soufflage, dont les coordonnées sont déterminées en reportant sur un diagramme psychométrique deux valeurs comme l'enthalpie et la teneur en eau, par exemple.

Les conditions du point de soufflage (plus précisément les conditions de confort) permettront de dimensionner les éléments de l'installation :

  • le débit massique permettra de calculer les puissances des batteries et le débit d'eau piégé par celle-ci (batterie froide humide), le débit d'eau à injecter (humidificateur vapeur),
  • l'enthalpie, la température sèche et l'humidité absolue permettront de placer le point sur le diagramme.

Positionnement du point de soufflage

Cette section ne cite pas suffisamment ses sources. Pour l'améliorer, ajoutez des références vérifiables [Comment faire ?] ou le modèle {{Référence nécessaire}} sur les passages nécessitant une source.

Le positionnement du point de soufflage par rapport à celui du local dépend des charges sensibles et latentes (apports ou déperditions).

  • Les conditions à maintenir dans le local sont : θL, rL
  • Les conditions du point de soufflage sont : θs, rs
  • Les charges sensibles peuvent être : =0; <0 ou >0
  • Les charges latentes peuvent être : =0; <0 ou >0

Suivant les valeurs des charges, on peut considérer 9 positions significatives du point de soufflage par rapport à celui du local. En fonction du bilan thermique (apports ou déperditions), on peut donc prévoir la position du point de soufflage par rapport à celui du local.

Écart au soufflage et du taux de brassage

L'écart de température au soufflage représente la différence algébrique entre la température de soufflage et la température du local :

  • Δθ = θs - θL ou Δθ = θL - θs

Cet écart est toujours positif quelle que soit la position du point de soufflage par rapport à celui du local. Il dépend du type de bouches utilisées.

On peut prendre en première approximation les valeurs suivantes :

  • Soufflage été : Δθ = de 5 à 15 K
  • Soufflage hiver : Δθ = de 5 à 20 K

Le taux de brassage représente le volume d'air traité renouvelé dans le local pendant une heure :

  • τ =qv/V
    • τ = taux de brassage en h-1
    • V = volume du local en m³
    • qv = débit volumique de soufflage en m³/h.

Le taux de brassage dépend du type de bouches de soufflage installées. Il ne dépasse pas 15 en climatisation de confort et peut aller jusqu'à 30 en climatisation industrielle.

Inconvénients et polémiques

Cette section ne cite pas suffisamment ses sources (juillet 2015). Pour l'améliorer, ajoutez des références vérifiables [Comment faire ?] ou le modèle {{Référence nécessaire}} sur les passages nécessitant une source.

La climatisation assistée présente des avantages et des inconvénients sanitaires, mais aussi des risques pour la santé et l'environnement[Lesquels ?].

Pour la santé

Les systèmes de climatisation sont accusés de provoquer les risques de santé suivants :

  • Certains climatiseurs ou systèmes extérieurs de réfrigération produisent des eaux où, si les appareils sont mal entretenus, des organismes pathogènes peuvent proliférer. L'exemple le plus cité est celui de l'agent de la légionellose.
  • L'injection de désinfectants dans ces systèmes (produits chlorés en général) peut aussi poser des problèmes de santé, et favoriser l'apparition de pathogènes chlororésistants.
  • Presque tous les systèmes de climatisation comportent des filtres, qui doivent être nettoyés ou changés périodiquement ; cet entretien n'est pas toujours effectué.
  • Une climatisation n'a de sens que dans un espace relativement « fermé » ; dans ces conditions, divers polluants ou contaminants biologiques (microbes) peuvent se concentrer (même s'ils se développent moins à basse température, dans le cas où la climatisation réfrigère l'air).
  • Une climatisation excessive expose la personne qui se rend ensuite dans un espace non climatisé à un choc thermique. D'après l'agence de l'environnement et de la maîtrise de l'énergie (Ademe), il est recommandé de ne pas descendre en dessous de 26 °C et de maintenir une différence de température comprise entre 5 et 7 °C entre l’intérieur et l’extérieur d'un bâtiment[1].
  • La transmission de virus entre différents locaux par les systèmes de climatisation a fait l'objet d'études qui ne permettaient pas, en 2009, d'apporter de conclusion définitive ; alors que se développait l'épidémie de grippe A (H1N1) de 2009, l'Agence française de sécurité sanitaire de l'environnement et du travail (Afsset) conseillait : « Dans le cas des bâtiments collectifs équipés d’une centrale de traitement de l’air (climatisation centralisée), maintenir l’apport d’air extérieur et arrêter, si possible sans autre inconvénient, le recyclage »[2]. L'agence française estime en effet que « Dans les bâtiments équipés d’une ventilation avec recyclage de l’air (climatisations dans les immeubles de bureaux ou les bâtiments accueillant du public comme les supermarchés), le risque de transmission ne peut être exclu, mais il reste difficile à évaluer car il dépend de nombreux facteurs non connus (virulence de la souche de virus, cheminement de l’air dans les pièces et les systèmes de ventilation, etc.)[2] ».

Pour l'environnement

La climatisation est critiquée pour les raisons suivantes :

  • Elle dépense de l'énergie, augmente la consommation énergétique des bâtiments ou véhicules qui en sont équipés. L'Ademe estime à 5 % le surcoût annuel de la climatisation des automobiles (1 litre/100 km lorsqu'elle est en fonctionnement).
  • La consommation énergétique est telle que par exemple la consommation électrique en été atteint et dépasse en France la consommation électrique faite en hiver, notamment depuis la canicule de 2003 qui a entraîné l'équipement d'un nombre élevé de foyers en climatiseurs. Alors que, dans un même temps, le parc énergétique Français (notamment nucléaire) ne peut fournir toute l'énergie car devant fonctionner à régime réduit à cause des difficultés de réfrigération rencontrées[3] par contre les centrales électriques solaires sont au maximum de leur production le jour.
  • Elle fait souvent appel à des dispositifs frigorigènes utilisant des gaz à effet de serre (HFC dont le pouvoir en termes d'effet de serre est 2 000 fois plus fort que celui du CO2, et dont une partie s'échappe inévitablement dans l'atmosphère (accidents, fuites, mauvaise gestion de la fin de vie du matériel). Toujours selon l'Ademe, cet effet équivaut à une augmentation de 10 % de l'impact d'un véhicule sur l'effet de serre. Ajouté à la production de CO2, produit dans les centrales génératrices d'électricité basée sur la combustion de carburants, elle a donc un impact à terme sur le réchauffement climatique global et la montée des mers.
  • Le circuit de la récupération/recyclage des gaz dans les appareils et véhicules en fin de vie reste opaque.
  • La climatisation par un gaz pourrait souvent être remplacée par une climatisation mécanique, des bâtiments ou véhicules mieux conçus (isolation, pare-soleil, etc.), et des dispositifs plus "naturels" utilisés par exemple par l'architecture bioclimatique (murs épais à inertie thermique élevée, puits provençal, etc.).
  • Enfin, il existe des solutions alternatives à la climatisation, comme le rafraîchissement d'air par évaporation[4], appelé également bioclimatisation, refroidissement adiabatique ou climatisation écologique. Ces systèmes fonctionnent sans gaz réfrigérants, en se basant sur l'évaporation de l'eau. L'avantage principal est la réduction forte des consommations électriques, et un air plus sain car renouvelé en permanence. La limite est un abaissement de température moyen.

Pour la santé et pour l'environnement

Certains produits tels que le bromure de lithium (LiBr) sont à la fois dangereux pour la santé et pour l'environnement. Utilisé dans les machines à absorption (climatisation utilisant de l'eau, de l'ammoniac et le gaz naturel comme source d'énergie, dans une machine à absorption produisant de l'eau chaude et glacée utilisable simultanément) à raison de centaines de litres (plus de 1 000 litres souvent dans les climatiseurs industriels), il peut fuir et doit être vidangé par des professionnels qualifiés en fin de vie de la machine. Après les faillites ou cessations d'activité, il est parfois difficile de savoir ce que sont devenus ces produits.

Législation

Outre les normes concernant les appareils, leur consommation électrique, la légionellose ou le recyclage des matériaux qui les composent, la législation évolue pour mieux appliquer les protocoles de Montréal (protection de la couche d'ozone, qui a justifié l'interdiction de certains gaz) et de Kyoto, mais souvent en permettant l'utilisation des stocks d'anciens produits et avec une certaine lenteur.

Directives européennes

La directive européenne sur la performance énergétique des bâtiments (2002/91/CE[5]) prévoit une inspection périodique des systèmes de climatisation et des pompes à chaleur réversibles d'une puissance supérieure à 12 kW (hors "froid industriel" soumis à d'autres réglementations). Cette inspection comprend une évaluation du rendement de la climatisation et de son dimensionnement par rapport aux exigences en matière de refroidissement du bâtiment. Des conseils appropriés sont donnés aux utilisateurs sur l'éventuelle amélioration ou le remplacement du système de climatisation et sur les autres solutions envisageables[6].

Réglementation française

En France, pour les installations anciennes (posées avant juillet 2011) la première inspection doit avoir lieu avant le pour les systèmes de 12 à 100 kW et avant le pour ceux dont la puissance est de 100 kW ou plus. Pour les installations neuves ou tout remplacement, l’inspection devra être réalisée dans l’année suivant la mise en service. Les inspections doit être renouvelées au moins une fois tous les 5 ans.

En France, le décret no 2007-363 du [7], Art. R. 131-29, interdit le fonctionnement des climatiseurs lorsque la température des locaux est inférieure ou égale à 26 °C. Le décret n'est encore qu'une recommandation dont la non-application n'est pas poursuivie par la loi. Le but est simplement de pousser les utilisateurs à modérer leur utilisation de ce type d'équipement.

À partir du , les spécialistes de la climatisation et/ou réfrigération devront :

  • présenter une « attestation de capacité » fournie par un organisme agréé, certifiant que son personnel est compétent et qu'il dispose de l'outillage adéquat ;
  • déclarer à l'Ademe, annuellement, la quantité de fluides utilisée et récupérés (Cf. statistiques et « traçabilité » de ces produits soumis à réglementation).

Qualiclimafroid, association de professionnels, s'est portée candidate[8] pour être organisme agréé et délivrer des attestations de capacité.

Notes et références

  1. le confort d'été, sur le site ademe.fr
  2. 1 2 [PDF] Impacts sanitaires & énergétiques des installations de climatisation, sur le site anses.fr
  3. Les centrales nucléaires doivent s'adapter aux canicules sur notre-planete.info
  4. Comment fonctionne un rafraîchisseur d’air ?, sur le site bricoleurdudimanche.com, consulté le 20 novembre 2012
  5. transposée en juillet 2011 dans le droit français
  6. Directive 2002/91/CE, sur le site eur-lex.europa.eu
  7. Décret n°2007-363 du 19 mars 2007, Journal Officiel n°68 du 21 mars 2007, page 5146
  8. Communiqué Aout 2007 AFP

Voir aussi

Articles connexes

  • Portail de l’énergie
  • Portail du froid et de la climatisation
  • Portail de l’architecture et de l’urbanisme
This article is issued from Wikipédia - version of the Sunday, October 11, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011