On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Teorema di Matiyasevich - Wikipedia

Teorema di Matiyasevich

Da Wikipedia, l'enciclopedia libera.

Il teorema di Matiyasevich, provato nel 1970 da Yuri Matiyasevich, implica che il decimo problema di Hilbert è irrisolvibile. Il problema richiede la costruzione di un algoritmo generale che sia in grado di stabilire se un dato sistema di equazioni diofantee (polinomi a coefficienti interi) ha soluzioni intere. David Hilbert ha posto il problema durante suo discorso del 1900 al Congresso Internazionale dei Matematici.

Un sistema tipico di equazioni diofantee assomiglia a questo:

3x2y − 7y2z3 = 18
− 7y2 + 8z2 = 0

Il problema è stabilire se esistono degli interi x, y e z che soddisfano entrambe le equazioni simultaneamente. Si vede che questo problema è equivalente a quello di stabilire se una singola equazione diofantea in più variabili ha soluzioni nell'insieme dei numeri interi. Ad esempio, il sistema precedente è risolvibile negli interi se e solo se la seguente equazione è risolvibile nell'insieme dei numeri naturali:

( 3(x1x2)2(y1y2) − 7(y1y2)2(z1z2)3 − 18 )2 + ( −7(y1y2)2 + 8(z1z2)2)2 = 0.

Matiyasevich ha usato un trucco ingegnoso che coinvolge i numeri di Fibonacci per mostrare che le soluzioni delle equazioni diofantee possono crescere esponenzialmente. I lavori precedenti di Julia Robinson, Martin Davis e Hilary Putnam hanno mostrato che questo è sufficiente a mostrare che non può esistere nessun algoritmo capace di decidere la risolubilità delle equazioni diofantee.

Lavori successivi hanno mostrato che il problema della risolubilità è indecidibile anche se l'equazione ha solo 9 variabili naturali (Matiyasevich, 1977) o 11 variabili intere (Zhi Wei Sun, 1992).

Il teorema di Matiyasevich stesso è molto più forte della insolubilità del Decimo Problema. Infatti dice:

Ogni insieme ricorsivamente enumerabile è diofanteo.

Un insieme S di interi è ricorsivamente enumerabile se esiste un algoritmo che si comporta nel seguente modo: dato come input un intero n, se n è un elemento di S, allora l'algoritmo alla fine termina; altrimenti non termina mai. questo è equivalente a dire che esiste un algoritmo che non termina mai e che elenca gli elementi di S. Un insieme S è diofanteo se esiste un certo polinomio a coefficienti interi f(n, x1, ..., xk) tale che un intero n è in S se e solo se esistono degli interi x1, ..., xk tali che f(n, x1, ..., xk) = 0.

Non è difficile vedere che ogni insieme diofanteo è ricorsivamente enumerabile: si consideri una equazione diofantea f(n, x1, ..., xk) = 0. Ora costruiamo un algoritmo che semplicemente prova tutti i possibili valori per n, x1, ..., xk e scrive n ogni volta che f(n, x1, ..., xk) = 0. Questo algoritmo ovviamente non termina mai ed elenca esattamente gli n per i quali f(n, x1, ..., xk) = 0 ha una soluzione in x1, ..., xk.

Il teorema di Matiyasevich, insieme a un risultato scoperto negli anni 1930 implica che la soluzione al decimo problema di Hilbert è impossibile. Il risultato scoperto negli anni 1930 da molti logici si può formulare nel seguente modo: "esistono insiemi ricorsivamente enumerabili non ricorsivi". In questo contesto, un insieme S di interi è detto "ricorsivo" se esiste un algoritmo che, dato come input un intero n, ritorna come output una risposta si/no corretta alla domanda: "n è un elemento di S?" Da questo segue che esistono equazioni diofantee che non possono essere risolte da nessun algoritmo, a meno che non si possa costruire un ipercomputer (Kieu, 2003); comunque questa possibilità è in genere fisicamente implausibile.

Il teorema di Matiyasevich è stato usato successivamente per provare l'insolubilità di molti problemi riguardanti l'analisi e le equazioni differenziali.

Si può anche derivare la seguente forma (più forte) del teorema di incompletezza di Gödel dal risultato di Matiyasevich:

Per ogni assiomatizzazione data della teoria dei numeri è possibile costruire esplicitamente una equazione diofantea priva di soluzioni, ma tale che questo fatto non si può provare all'interno dell'assiomatizzazione data.

[modifica] Bibiliografia

  • (EN) Y. Matiyasevich. "Enumerable sets are Diophantine." Doklady Akademii Nauk SSSR, 191, pp. 279-282, 1970. Traduzione inglese in Soviet Mathematics. Doklady, vol. 11, no. 2, 1970.
  • (EN) M. Davis. "Hilbert's Tenth Problem is Unsolvable." American Mathematical Monthly 80, pp. 233-269, 1973.
  • (EN) T. Kieu. "Quantum Algorithm for the Hilbert's Tenth Problem", Int. J. Theor. Phys. 42, pp. 1461-1478, 2003. e-print archive quant-ph/0110136 (PDF)


Static Wikipedia March 2008 on valeriodistefano.com

aa   ab   af   ak   als   am   an   ang   ar   arc   as   ast   av   ay   az   ba   bar   bat_smg   bcl   be   be_x_old   bg   bh   bi   bm   bn   bo   bpy   br   bs   bug   bxr   ca   cbk_zam   cdo   ce   ceb   ch   cho   chr   chy   co   cr   crh   cs   csb   cv   cy   da   en   eo   es   et   eu   fa   ff   fi   fiu_vro   fj   fo   fr   frp   fur   fy   ga   gd   gl   glk   gn   got   gu   gv   ha   hak   haw   he   hi   ho   hr   hsb   ht   hu   hy   hz   ia   id   ie   ig   ii   ik   ilo   io   is   it   iu   ja   jbo   jv   ka   kab   kg   ki   kj   kk   kl   km   kn   ko   kr   ks   ksh   ku   kv   kw   ky   la   lad   lb   lbe   lg   li   lij   lmo   ln   lo   lt   lv   map_bms   mg   mh   mi   mk   ml   mn   mo   mr   ms   mt   mus   my   mzn   na   nah   nap   nds   nds_nl   ne   new   ng   nl   nn   nov  

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu