On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Formule di Waring - Wikipedia

Formule di Waring

Da Wikipedia, l'enciclopedia libera.

Le formule di Waring sono formule algebriche utilizzate nella soluzione di un sistema simmetrico, e derivano dalle teorie di Edward Waring, matematico britannico del XVIII secolo.

Le formule più utilizzate sono quelle per potenze del binomio di ordine n = 2 oppure 3, che sono quelle del quadrato e cubo del trinomio. Questo calcolo serve a trasformare le potenze del binomio di variabili a e b in somme e prodotti di queste variaibili. Tali somme e prodotti di queste variabili sono riconducibili alla forma canonica di un sistema simmetrico. Da notare che: s = (a + b) e p = (a * b).

  1. a2 + b2 = (a + b)2 − 2ab = s2 − 2p
  2. a3 + b3 = (a + b)3 − 3a2b − 3ab2 = (a + b)3 − 3ab(a + b) = s3 − 3ps
  3. a4 + b4 = (a + b)4 − 4a3b − 6a2b2 − 4ab3 = (a + b)4 − 4ab(a2 + b2) − 6a2b2 = (a + b)4 − 4ab((a + b)2 − 2ab) − 6a2b2 = s4 − 4p(s2 − 2p) − 6p2
  4. a5 + b5 = (a + b)5 − 5ab(a3 + b3) − 10a2b2(a + b)
  5. a6 + b6 = (a + b)6 − 6ab(a4 + b4) − 15a2b2(a2 + b2) − 20a3b3
  6. a7 + b7 = (a + b)7 − 7ab(a5 + b5) − 21a2b2(a3 + b3) − 35a3b3(a + b)
  7. a8 + b8 = (a + b)8 − 8ab(a6 + b6) − 28a2b2(a4 + b4) − 56a3b3(a2 + b2) − 70a4b4

Per il postulato di Peano, la formula di Waring è deducibile per ogni potenza n. Infatti la proprietà P(n) è stata dedotta per tre valori di n=(2,3,4) ed è perciò generalizzabile ad n qualsiasi.

Come già per la quarta potenza nella quale viene sostituita la formula della seconda potenza del binomio, la ricorsione delle prime 4 in quelle di ordine n-esimo, permette di esprimere il tutto in potenze della somma e prodotto delle variabili a e b. È opportuno vedere le formule di Waring in relazione ai sistemi simmetrici in quanto sono nate ed essenzialmente si usano in questo contesto, nel quale è necessario trasformare le variabili in somme e prodotti.

La risoluzione con questo metodo per ogni potenza n è evidente se si considera il triangolo di Tartaglia: data una potenza n, per ogni termine del tipo  :ak * b(nk), ne esiste uno del tipo: a(nk) * bk. Con un raccoglimento a fattor comune dei due termini, si otterranno: un termine del tipo a(nk) * b(nk) * (a(2kn) + b(2kn)), per nk < k, ovvero n < 2k.

Le formule di Waring sono deducibili (per una data potenza n) dalla formula di Tartaglia, scomponendo la sommatoria in tre tipi di termini:

- an + bn,

- an / 2 * bn / 2, per n pari,

- am * bm * (ao + bo), dove:

m = [1;n],

o = [1;n − 2k] con k numero intero.

Dunque, nelle sommatorie troviamo: la potenza n-esima del binomio, il prodotto dei termini elevato a metà potenza, dei termini "misti" di potenze del prodotto dei termini e di loro somme secondo multipli interi di 2 (fino a n; o n − 1, se n è dispari).

Abbiamo riportato le formule di Waring per potenze superiori alla quarta per generalizzare agevolmente la formula, ad n qualsiasi.

a^n + b^n_{} = (a + b)^n - \sum_{i=1}^{f_1} T_i * a^ib^i * [a^{n -2i} + b^{n - 2i}] - f_2, dove:

- per n dispari, f1 = (n / 2) e f2 = 0;

- per n pari, f1 = [(n / 2) − 1] e f2 = Tian / 2bn / 2, con Ti i-esimo coefficiente del triangolo di Tartaglia per la potenza n, iniziando a contare da quello più a sinistra.

[modifica] Voci correlate


Static Wikipedia March 2008 on valeriodistefano.com

aa   ab   af   ak   als   am   an   ang   ar   arc   as   ast   av   ay   az   ba   bar   bat_smg   bcl   be   be_x_old   bg   bh   bi   bm   bn   bo   bpy   br   bs   bug   bxr   ca   cbk_zam   cdo   ce   ceb   ch   cho   chr   chy   co   cr   crh   cs   csb   cv   cy   da   en   eo   es   et   eu   fa   ff   fi   fiu_vro   fj   fo   fr   frp   fur   fy   ga   gd   gl   glk   gn   got   gu   gv   ha   hak   haw   he   hi   ho   hr   hsb   ht   hu   hy   hz   ia   id   ie   ig   ii   ik   ilo   io   is   it   iu   ja   jbo   jv   ka   kab   kg   ki   kj   kk   kl   km   kn   ko   kr   ks   ksh   ku   kv   kw   ky   la   lad   lb   lbe   lg   li   lij   lmo   ln   lo   lt   lv   map_bms   mg   mh   mi   mk   ml   mn   mo   mr   ms   mt   mus   my   mzn   na   nah   nap   nds   nds_nl   ne   new   ng   nl   nn   nov  

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu