[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]

Imatge:Simpsons method illustration.png - Viquipèdia

Imatge:Simpsons method illustration.png

De Viquipèdia

Logo del projecte Wikimedia Commons
Aquest arxiu és una càrrega compartida, extreta del projecte Wikimedia Commons i pot ser usada per altres projectes.
Si voleu disposar de més informació sobre el fitxer, podeu visitar la pàgina original
La descripció a la pàgina de descripció del fitxer del repositori compartit es mostra a continuació.
Description

Simpson's method illustration. Done by myself (Oleg Alexandrov 23:17, 12 August 2007 (UTC)).

Source

Originally from en.wikipedia; description page is/was here.

Date

2005-11-23 (original upload date)

Author

Original uploader was Oleg Alexandrov at en.wikipedia

Permission
(Reusing this image)

Released into the public domain (by the author).


[edit] License information

Public domain This image has been (or is hereby) released into the public domain by its author, Oleg Alexandrov at the English Wikipedia project. This applies worldwide.

In case this is not legally possible:
Oleg Alexandrov grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

[edit] Source code

function simpson() % draw an illustration for Simpson's rule

% prepare the scrreen and define some parameters   
clf; hold on; axis equal; axis off; 
fontsize=25; thick_line=3; thin_line=2; black=[0, 0, 0]; red=[1, 0, 0];
arrowsize=0.1; arrow_type=1; arrow_angle=30; % (angle in degrees)
circrad=0.015; % radius of ball showing up in places

% the function formula and its graph
f=inline('0.45*sin(3.3*(x+0.18))+1'); X=-0.6:0.01:0.8; Y=f(X); 

% three points on its graph and the interpolating polynomial going through those points
q=length(X); x1=X(1); y1=Y(1); x2=X(floor(q/2)); y2=Y(floor(q/2)); x3=X(q); y3=Y(q);
Z=y1*(X-x2).*(X-x3)./((x1-x2)*(x1-x3))+y2*(X-x1).*(X-x3)./((x2-x1)*(x2-x3))+y3*(X-x1).*(X-x2)./((x3-x1)*(x3-x2));

% plot the x and y axes
arrow([-0.9 0], [1, 0],          thin_line, arrowsize, arrow_angle, arrow_type, black) 
arrow([-0.8, -0.1], [-0.8, 1.6], thin_line, arrowsize, arrow_angle, arrow_type, black) 

% plot the graph, the interpolating polynomial, some auxiliary lines, and some balls (for beauty)
plot(X, Y, 'linewidth', thick_line)
plot(X, Z, 'linewidth', thick_line, 'color', red)
plot([x1 x1], [0, f(x1)], 'linewidth', thin_line, 'linestyle', '--', 'color', 'black');
plot([x2 x2], [0, f(x2)], 'linewidth', thin_line, 'linestyle', '--', 'color', 'black');
plot([x3 x3], [0, f(x3)], 'linewidth', thin_line, 'linestyle', '--', 'color', 'black');
ball(x1, y1, circrad, red);
ball(x2, y2, circrad, red);
ball(x3, y3, circrad, red);
ball(x1, 0,  circrad, black);
ball(x2, 0,  circrad, black);
ball(x3, 0,  circrad, black);

% place text
tiny=0.1; p0=(x1+x2)/2; q0=(x2+x3)/2; 
H=text(x1, -tiny,  'a');          set(H, 'fontsize', fontsize, 'HorizontalAlignment', 'c')
H=text(x2, -tiny,  'm');          set(H, 'fontsize', fontsize, 'HorizontalAlignment', 'c')
H=text(x3, -tiny,  'b');          set(H, 'fontsize', fontsize, 'HorizontalAlignment', 'c')
H=text(p0, 0.43+f(p0),  'P(x)');  set(H, 'fontsize', fontsize, 'HorizontalAlignment', 'c', 'color', 'red')
H=text(q0, 0.15+f(q0),  'f(x)');  set(H, 'fontsize', fontsize, 'HorizontalAlignment', 'c', 'color', 'blue')

saveas(gcf, 'Simpsons_method_illustration.eps', 'psc2') % export to eps

function ball(x, y, r, color)
   Theta=0:0.1:2*pi;
   X=r*cos(Theta)+x;
   Y=r*sin(Theta)+y;
   H=fill(X, Y, color);
   set(H, 'EdgeColor', 'none');


function arrow(start, stop, thickness, arrow_size, sharpness, arrow_type, color)
   
% Function arguments:
% start, stop:  start and end coordinates of arrow, vectors of size 2
% thickness:    thickness of arrow stick
% arrow_size:   the size of the two sides of the angle in this picture ->
% sharpness:    angle between the arrow stick and arrow side, in degrees
% arrow_type:   1 for filled arrow, otherwise the arrow will be just two segments
% color:        arrow color, a vector of length three with values in [0, 1]
   
% convert to complex numbers
   i=sqrt(-1);
   start=start(1)+i*start(2); stop=stop(1)+i*stop(2);
   rotate_angle=exp(i*pi*sharpness/180);

% points making up the arrow tip (besides the "stop" point)
   point1 = stop - (arrow_size*rotate_angle)*(stop-start)/abs(stop-start);
   point2 = stop - (arrow_size/rotate_angle)*(stop-start)/abs(stop-start);

   if arrow_type==1 % filled arrow

      % plot the stick, but not till the end, looks bad
      t=0.5*arrow_size*cos(pi*sharpness/180)/abs(stop-start); stop1=t*start+(1-t)*stop;
      plot(real([start, stop1]), imag([start, stop1]), 'LineWidth', thickness, 'Color', color);

      % fill the arrow
      H=fill(real([stop, point1, point2]), imag([stop, point1, point2]), color);
      set(H, 'EdgeColor', 'none')
      
   else % two-segment arrow
      plot(real([start, stop]), imag([start, stop]),   'LineWidth', thickness, 'Color', color); 
      plot(real([stop, point1]), imag([stop, point1]), 'LineWidth', thickness, 'Color', color);
      plot(real([stop, point2]), imag([stop, point2]), 'LineWidth', thickness, 'Color', color);
   end

[edit] Original upload log

(All user names refer to en.wikipedia)

Historial del fitxer

Cliqueu sobre la data/hora per veure el fitxer tal com era aleshores.

Data/HoraDimensionsUsuariComentari
actual18:20, 20 des 20051.186×1.072 (26 KB)Audriusa (Simpson's method illustration. Done by myself. {{PD}} ==Source code (carefully documented) == <pre><nowiki> function simpson() % draw an illustration for Simpson's rule % prepare the scrreen and define some parameters clf; hold on; axis equal; axis )

Les següents pàgines enllacen a aquesta imatge: