Web Analytics Made Easy - Statcounter
Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Troisième principe de la thermodynamique

Troisième principe de la thermodynamique

Cet article ou cette section doit être recyclé.
Une réorganisation et une clarification du contenu paraissent nécessaires. Discutez des points à améliorer en page de discussion.

Le troisième principe de la thermodynamique, appelé aussi principe de Nernst (1906), énonce que :

« L'entropie d'un cristal parfait à 0 kelvin est nulle. »

Cela permet d'avoir une valeur déterminée de l'entropie (et non pas « à une constante additive près »). Ce principe est irréductiblement lié à l'indiscernabilité quantique des particules identiques.

Un exemple simple : les gaz rares

L'argon est quasiment un gaz parfait monoatomique. Son entropie a été calculée dans l'article second principe de la thermodynamique, approche statistique : un exemple concret.

Un autre exemple simple, mais exotique

L'hélium III : il s'agit ici d'un liquide quantique, qui, pour une température très inférieure à la température de Fermi, n'a pratiquement qu'un seul état possible et donc son entropie est nulle. Par contre, le cristal hélium III a une entropie molaire N_A k_B \times \ln 2 = R \times \ln 2 = 5.76\,\text{J}\cdot \text{K}^{-1}\cdot \text{mol}^{-1} donc plus grande que celle du liquide. De ce fait, pour faire fondre le solide, il faut extraire de la chaleur : c'est le seul cas connu où la chaleur latente de fusion est négative. Ce phénomène est connu sous le nom d'effet Pomeranchuk.

En présence d'un très fort champ magnétique, le solide est entièrement polarisé : il n'y a pratiquement qu'un état possible ; le phénomène précédent disparait.

Conséquences du troisième principe

Les capacités calorifiques Cv et Cp doivent tendre vers zéro, quand T tend vers zéro. Il en est ainsi de la capacité calorifique des cristaux puisque C_v = a×T3 (loi de Debye à basse température). Dans le cas des métaux, quand la température devient très basse, il faut tenir compte de la contribution des électrons libres et la capacité électronique est Cv, élec = γ×(T/TF) où TF est la température de Fermi, donc Cv, élec tend aussi vers zéro quand T → 0 K.

On ne peut atteindre le zéro absolu. On est plus proche de la physique si on considère que la bonne variable pour considérer la température est -(1/T) ou -1/(kT) : alors dire que T tend vers zéro signifie que cette variable tend vers moins l'infini, ce qui évidemment n'est jamais atteignable. En fait, la variable -(1/T) est le paramètre intensif associé à l'énergie U.

Néanmoins, comme la température est la variable intensive associée à l'entropie S, en thermodynamique statistique, dans des cas particuliers, on peut avoir des températures négatives (mais dans ce cas cela n'a rien à voir avec la notion thermique de chaud et de froid, la température T n'est alors uniquement que le paramètre intensif associé à S).

Historique

Nernst imagina le troisième principe bien avant la théorie quantique, pour des raisons liées aux mesures aux basses températures. Giauque (1895-1982) fit de nombreuses mesures qui confirmèrent la théorie de Nernst (par exemple, la valeur résiduelle d'entropie de la glace due à la liaison hydrogène O-H....O). Sa méthode de désaimantation adiabatique lui permit aussi d'atteindre de très basses températures (moins de 1 K).

La constante de Sackur-Tetrode permit de trouver une valeur approximative de la constante de Planck, qui de ce fait se trouva placée au rang de constante universelle pour tous les corps, et donc profondément ancrée dans une théorie de la matière. On sait qu'en 1925, cela se concrétisa avec la création de la mécanique quantique.

La production d'atomes froids en 1995 permet aujourd'hui d'atteindre des températures si basses que l'on peut mettre en évidence la notion de gaz parfait quantique de Bose-Einstein (avec bien sûr, des correctifs car le gaz est réel). La notion de gaz de Fermions est évidemment plus commune, puisqu'elle entre en œuvre dans la théorie de la surface de Fermi des électrons, dans les métaux.

Systèmes ouverts

Dans une autre acception, le troisième principe de la thermodynamique fait référence, dans le cas d'un système ouvert, à l'auto-organisation du système conduisant à la maximisation de la dissipation d'énergie[1].

Notes et références

  1. Roderick Dewar, INRA de Bordeaux, janvier 2003

Voir aussi

Articles connexes

  • Portail de la chimie
  • Portail de la physique
This article is issued from Wikipédia - version of the Monday, April 20, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011