Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Octet

Octet

Page d'aide sur l'homonymie Pour les articles homonymes, voir Octet (homonymie).
10100011
Écriture de 27+25+21+20,
c'est-à-dire 163 dans un octet.

En informatique, un octet est un regroupement de 8 bits codant une information. Dans ce système de codage, s'appuyant sur le système binaire, un octet permet de représenter 28, c'est-à-dire 256, valeurs différentes. Un ou plusieurs octets permettent ainsi de coder des valeurs numériques ou des caractères.

Le terme est couramment utilisé comme unité de mesure en informatique (symbole : o) pour indiquer la capacité de mémorisation des mémoires informatiques. À cette occasion, on utilise des multiples de l'octet, comme le kilooctet (ko) ou le mégaoctet (Mo). Cette unité permet aussi de quantifier la rapidité de transfert d'informations en octet par seconde.

Un octet est toujours composé de 8 bits alors que le byte (prononcé [baɪt]) ou multiplet, qui a souvent une taille d'un octet (8 bits) (en anglais 8-bit byte), peut aussi avoir une taille différente (en général de 7 à 9 bits) (en anglais 7-bit byte et 9-bit byte). Cette similitude fait que les deux mots sont fréquemment, mais abusivement, considérés comme synonymes[1].

Multiples de l'octet : préfixes binaires
Nom Symbole Valeur
kibioctet Kio210
mébioctet Mio220
gibioctet Gio230
tébioctet Tio240
pébioctet Pio250
exbioctet Eio260
zébioctet Zio270
yobioctet Yio280
Multiples de l'octet : préfixes SI et mésusages
Nom Symbole Valeur Mésusage[2]
kilooctet ko103210
mégaoctet Mo106220
gigaoctet Go109230
téraoctet To1012240
pétaoctet Po1015
exaoctet Eo1018
zettaoctet Zo1021
yottaoctet Yo1024

Symboles

Le symbole de l'octet est la lettre « o » minuscule.

La lettre « O » (en majuscule) n'est pas acceptable dans le système international d'unités (SI) en raison du risque de confusion avec le chiffre 0 et parce que les lettres majuscules sont en général utilisées pour les symboles des unités dérivées d'un nom propre (par exemple : volt, dont le symbole est V). Cette question n'est cependant pas tranchée, les unités d'information ne faisant pas partie du SI.

Multiples

Pourcentage de différence entre la représentation décimale et la représentation binaire.
Le gestionnaire de fichiers Nautilus disponible (entre autres) sur les systèmes GNU/Linux écrit les valeurs en Gio (puissance de 2), ce qui est conforme à la normalisation CEI.
Windows écrit les valeurs en Go (puissance de 10), tout en les calculant en Gio (puissance de 2), ce qui est contraire aux règles du SI.

Traditionnellement, les préfixes « kilo », « méga », « giga », etc. dans le monde informatique, ne représentaient pas une puissance de 10 (103 = 1 000), mais une puissance de 2 (210 = 1 024) (plus précisément, il s'agit de puissance de 103 et 210, car la notion de multiple porte sur l'exposant 3 ou 10). Cependant cette tradition violait les normes en vigueur pour les autres unités, y compris le bit, et n'est même pas appliquée uniformément aux octets, notamment dans la mesure de la capacité des disques durs. Une nouvelle norme a donc été créée pour noter les multiples de 210 = 1 024[3],[4] : les « kibi », « mébi », « gibi », etc.

L'usage traditionnel reste largement en vigueur chez les professionnels comme le grand public, même si c'est en contradiction avec les recommandations SI qui définissent clairement d'autres préfixes. L'usage des préfixes binaires reste très confidentiel et ne se répand presque pas dans le langage courant, alors que les valeurs représentées par ces unités en puissance de 2 sont très utilisées dans les applications, notamment les systèmes d'exploitation. Cependant, leur utilisation commence à se répandre, notamment dans le monde du logiciel libre, comme dans les systèmes d'exploitation libres de type GNU/Linux.

Cette distinction (entre préfixes binaires et décimaux) est nécessaire, car la confusion entre les deux séries de coefficients est utilisée depuis longtemps par les fabricants de disques durs. Le fait que l'usage (pour une même capacité) de préfixes en puissances de 10 permette d'afficher commercialement des valeurs supérieures à celles données par les puissances de 2 peut introduire une erreur d'appréciation de la part d'utilisateurs non avertis. Ainsi, un disque dur de 100 gigaoctets (100×109 octets) contient le même nombre (à l'erreur d'arrondi près) d'octets qu'un disque de 93,13 gibioctets (93,13×230 octets).

La très grande majorité des disques durs étant divisés et adressables en secteurs de 512 octets, un comptage en unités de 1 024 octets serait plus naturel (en utilisant cette fois les préfixes binaires) ; les disques de stockage à mémoire non volatile (y compris les clés USB, lecteurs MP3 mobiles, etc.) utilisent généralement l'unité avec le préfixe binaire. Mais cette capacité est celle du volume non formaté, le formatage des disques en système de fichiers en retire une partie, de plus une petite partie du volume de la mémoire non volatile est parfois utilisée par le logiciel interne de l'unité de stockage.

D'autres usages courants, mais incorrects, suppriment complètement le nom ou le symbole de l'unité pour ne plus garder que le nom ou le symbole du préfixe multiplicateur « k ». Cela entraîne cependant de nombreuses ambigüités quant à la nature de cette unité, notamment quand on l'utilise pour exprimer un taux de transfert de données ou la capacité d'une puce de mémoire. En effet, dans ces deux cas, il est courant que l'on mesure en bits plutôt qu'en octets.

Multiples normalisés

La normalisation des préfixes binaires de 1998 par la Commission électrotechnique internationale spécifie les préfixes suivants pour représenter les puissances de 2 :

  • kibi pour « kilo binaire » ;
  • mébi pour « ga binaire » ;
  • gibi pour « giga binaire » ;
  • tébi pour « ra binaire » ;

et ainsi de suite.

Concernant les multiples de l'octet, cela donne[5] :

1 kibioctet (Kio) = 210 octets = 1 024 octets
1 mébioctet (Mio) = 220 octets = 1 024 Kio = 1 048 576 octets
1 gibioctet (Gio) = 230 octets = 1 024 Mio = 1 073 741 824 octets
1 tébioctet (Tio) = 240 octets = 1 024 Gio = 1 099 511 627 776 octets
1 pébioctet (Pio) = 250 octets = 1 024 Tio = 1 125 899 906 842 624 octets
1 exbioctet (Eio) = 260 octets = 1 024 Pio = 1 152 921 504 606 846 976 octets
1 zébioctet (Zio) = 270 octets = 1 024 Eio = 1 180 591 620 717 411 303 424 octets
1 yobioctet (Yio) = 280 octets = 1 024 Zio = 1 208 925 819 614 629 174 706 176 octets

Les préfixes kilo, méga, giga, téra, etc. correspondent aux mêmes multiplicateurs que dans tous les autres domaines : des puissances de 10. Appliqué à l'informatique, cela donne :

1 kilooctet (ko) = 103 octets = 1 000 octets
1 mégaoctet (Mo) = 106 octets = 1 000 ko = 1 000 000 octets
1 gigaoctet (Go) = 109 octets = 1 000 Mo = 1 000 000 000 octets
1 téraoctet (To) = 1012 octets = 1 000 Go = 1 000 000 000 000 octets
1 pétaoctet (Po) = 1015 octets = 1 000 To = 1 000 000 000 000 000 octets
1 exaoctet (Eo) = 1018 octets = 1 000 Po = 1 000 000 000 000 000 000 octets
1 zettaoctet (Zo) = 1021 octets = 1 000 Eo = 1 000 000 000 000 000 000 000 octets
1 yottaoctet (Yo) = 1024 octets = 1 000 Zo = 1 000 000 000 000 000 000 000 000 octets

Variantes orthographiques

La langue française pose un problème d'orthographe, relativement à la prononciation de la voyelle initiale du mot « octet » lorsqu'il suit un préfixe ; on peut donc trouver dans la littérature les formes suivantes : « kilo-octet » (avec trait d'union), « kilooctet » (sans trait d'union).

Propriétés

Propriétés de représentation binaire

Un octet peut représenter 28 = 256 valeurs différentes. La valeur de tout octet peut s'écrire avec un entier naturel entre 0 et 255 compris (en base 10). Elle peut aussi s'écrire avec huit chiffres binaires, entre 000000002 et 111111112 compris, ou avec deux chiffres hexadécimaux, entre 0016 et FF16 compris. La notation hexadécimale est utilisable dans de nombreux langages informatiques car elle est pratique et compacte pour noter la valeur d'un, ou plusieurs, octet(s).

Un octet peut servir à noter un entier naturel, appelé en informatique « non signé », entre 0 et 255 (en base 10). Une autre convention courante, le complément à deux, permet de noter un entier relatif, ou « signé », entre -128 et +127 compris (en base 10). Voir aussi l'article Système binaire.

De nombreuses conventions existent pour représenter un caractère par un ou plusieurs octets. On peut notamment citer le codage ISO 8859-1 très utilisé pour représenter avec un octet les 26 lettres minuscules, les 26 majuscules, les 10 chiffres, les lettres accentuées et la ponctuation, des langues d'Europe occidentale, dont le français. Plus récent, le codage UTF-8 permet de noter tout caractère avec un à quatre octets, selon le caractère. L'article sur le codage de caractères développe ce thème.

Propriétés de représentation décimale

Dans certaines applications nécessitant un codage exact des valeurs décimales (par exemple pour les applications financières), les puissances de 2 peuvent ne pas s'avérer pratiques. Aussi un octet est parfois utilisé pour stocker jusqu'à 2 chiffres décimaux exactement (entre 0010 et 9910), chacun codé sur un quartet (4 bits) distinct entre 00002 = 010 et 10012 = 910. Les autres valeurs de quartets peuvent être utilisées pour coder la position d'une virgule décimale, un signe, l'absence de chiffre significatif à la position indiquée, ou une autre fonction spéciale (valeur infinie, valeur erronée non numérique, etc.). Certains calculateurs (et des bibliothèques logicielles de calcul à virgule fixe ou travaillant sur de très grands entiers ou des valeurs de grande précision) utilisent ce format dit « BCD », sigle anglais de binary coded decimal (décimal codé en binaire).

L'usage du codage BCD était populaire sur les anciens systèmes (notamment ceux utilisant l'EBCDIC) car cela évitait une conversion finale coûteuse pour afficher les nombres à virgule flottante. De plus ce système était plus pratique au temps où les données étaient entrées manuellement sur des cartes perforées : pour convertir un nombre BCD en caractères, il suffisait d'éclater le nombre BCD en deux en n'utilisant qu'un seul quartet par octet pour représenter le chiffre en décimal, le quartet de poids fort prenant une valeur fixe indiquant simplement que c'est un chiffre décimal. Les autres valeurs de quartets de poids fort étaient utilisées pour indiquer que c'était une lettre majuscule, une lettre minuscule ou un autre symbole ou ponctuation. Aujourd'hui, dans la plupart des systèmes actuels, le codage EBCDIC des caractères et du BCD pour les valeurs numériques est plus rarement utilisé car la plupart des calculs se font plus rapidement en représentation binaire de façon matérielle avec une précision globale prédéfinie (codée sur un nombre fixe d'octets).

Il existe des variantes du système BCD permettant de conserver une représentation précise des nombres à virgule fixe ou flottante en base 10, tout en permettant une plus grande compacité de stockage et en rendant les calculs plus rapides. L'astuce consiste à grouper les chiffres décimaux et les représenter en binaire sur un groupe de plusieurs octets. Par exemple :

  • Tout d'abord la représentation en quartets s'avère coûteuse en termes de traitement, et une valeur BCD est généralement d'abord convertie en supprimant la séparation en quartets, pour alors représenter en binaire les deux chiffres décimaux sur le même octet ; le calcul est alors simplifié car il s'effectue par groupe de 2 chiffres à la fois au lieu d'un seul ; cette représentation laisse 1 bit de poids fort inutilisé (mais on peut l'utiliser comme marqueur pour des valeurs spéciales).
  • On peut représenter exactement 4 chiffres décimaux dans un groupe de 2 octets (c'est-à-dire sur 16 bits, puisque ceux-ci peuvent contenir 216 = 65 536 valeurs différentes) ; avec une représentation BCD, on stockerait exactement également 4 chiffres décimaux, mais les calculs se feraient uniquement chiffre par chiffre (c'est-à-dire 4 fois plus lentement) ; cette représentation laisse 2 bits de poids fort inutilisés (mais on peut les utiliser comme marqueurs pour des valeurs spéciales).
  • On peut représenter exactement 7 chiffres décimaux dans un groupe de 3 octets (c'est-à-dire sur 24 bits, puisque ceux-ci peuvent contenir 224 = 16 777 216 valeurs différentes) ; avec une représentation BCD, on ne stockerait exactement que 6 chiffres décimaux ; cette représentation ne laisse aucun bit inutilisé.
  • On peut représenter exactement 9 chiffres décimaux dans un groupe de 4 octets (c'est-à-dire sur 32 bits, puisque ceux-ci peuvent contenir 232 = 4 294 967 296 valeurs différentes) ; avec une représentation BCD, on ne stockerait exactement que 8 chiffres décimaux ; cette représentation laisse 2 bits de poids fort inutilisés (mais on peut les utiliser comme marqueurs pour des valeurs spéciales). Cette représentation est souvent utilisée dans les bibliothèques mathématiques de calcul sur des nombres de très grande précision.

Usages

Cette section ne cite pas suffisamment ses sources (mai 2015). Pour l'améliorer, ajoutez des références vérifiables [Comment faire ?] ou le modèle {{Référence nécessaire}} sur les passages nécessitant une source.

Les processeurs n'opèrent généralement pas sur chaque bit individuellement, mais sur des groupes de bits. L'habitude de concevoir le matériel pour qu'il traite les bits par huit, ou par multiples de huit, s'est généralisée depuis les années 1970, si bien qu'aujourd'hui l'octet et ses multiples sont généralement utilisés comme mesure de la capacité de mémorisation des mémoires informatiques : mémoire vive, disquette, disque dur, CD-ROM, etc. La taille des fichiers est aussi mesurée en octets (avec le plus souvent les multiples conventionnels, sauf pour les disques durs ; voir ci-après).

Le taux de transfert des bus informatiques entre les applications informatiques et périphériques informatiques locaux est généralement donné en octets par seconde (avec les multiples normalisés ; voir ci-après). Mais les débits sur les réseaux ou supports de transmission de données s'expriment plutôt :

en bauds (avec les multiples normalisés) 
c'est-à-dire le nombre de symboles codés par seconde, pour les technologies matérielles de modulation de très bas niveau, par exemple dans les modems, ces technologies séparant la fréquence d'échantillonnage en bauds (fortement liée à la bande passante physique exprimée en hertz) de la précision d'échantillonnage exprimée en bits par symbole (fortement liée au rapport signal/bruit du support de transmission exprimé en décibels ou en bits[réf. nécessaire]),
en bits par seconde (avec les multiples normalisés)
pour le débit binaire final utilisable, résultant du produit du débit en bauds par le nombre de symboles codés utilisables par symbole, diminué éventuellement des bits de détection ou correction d'erreurs ou de synchronisation.

Bits et octets

Exemples de conversion des bits vers octets (sans normalisation CEI) :

  • 8 bits = 1 octet
  • 1 kilobit = 1 000 bits = 125 octets
  • 1 kibibit = 1 024 bits = 128 octets
  • 512 kibibits = 524 288 bits = 65 536 octets = 64 kibioctets (65 536 octets / 1 024).
  • 1 mébibit = 1 048 576 bits = 131 072 octets = 128 kibioctets (131 072 octets / 1 024).
  • 10 mébibits = 10 485 760 bits = 1 310 720 octets = 1,25 mébioctet (1 310 720 octets / 1 0242)
  • 100 mébibits = 104 857 600 bits = 13 107 200 octets = 12,5 mébioctets (13 107 200 octets / 1 0242)

Mots

Lorsque le traitement se fait sur plusieurs octets simultanément, notamment 2 octets (16 bits) et 4 octets (32 bits), on parle parfois de mot et de double-mot. La signification de ces termes a tendance à varier avec le contexte, notamment car en terminologie des langages d'assemblage pour processeurs, le « mot » désigne souvent la quantité d'information dans un registre de calcul entier pour une opération élémentaire, cette quantité pouvant aussi dépendre du mode d'adressage utilisé par le processeur à l'exécution, (ou des traditions de programmation pour un système d'exploitation donné), aussi n'est-il pas recommandé de les utiliser.

Les termes doublet (16 bits), quadlet (32 bits) et octlet (64 bits) sont parfois utilisés alors pour enlever toute ambiguïté.[réf. nécessaire]

Octets, bits et décibels

Le bit (ou son multiple l'octet) est une unité dérivée parfois plus pratique dans certains calculs sur les signaux que le bel noté « B » ou le décibel noté « dB » : une qualité de signal d'1 bit est définie comme le double du logarithme binaire d'un rapport signal/bruit exactement égal à 2 et le bel est défini comme le logarithme décimal d'un rapport de grandeurs exactement égal à 10.

Par la suite, on parle de signaux de qualité 1 octet :

  • La qualité de signal d'1 bit vaut exactement 2.log10(2) bels ou 20.log10(2) décibels (soit environ 0,6 B ou 6 dB).
  • La qualité de signal d'1 octet vaut exactement 8 fois plus, soit 16.log10(2) bels ou 160.log10(2) décibels (soit environ 4,8 B ou 48 dB).

On peut noter qu'en dessous de 6 dB de rapport signal/bruit, il n'est théoriquement plus possible de détecter un seul bit entier d'information avec un seul échantillon. Cependant, la détection d'informations (pour la transmission ou le stockage) dans un tel signal est possible grâce à la technique du suréchantillonnage. Il suffit de prendre plusieurs échantillons : les rapports signal/bruit de chaque échantillon s'additionnent alors jusqu'à dépasser le seuil de 6 dB, au-delà duquel il est possible, par calcul, de détecter, transmettre ou stocker 1 bit d'information. On fait alors de même avec des signaux en dessous de 48 dB pour détecter, transmettre ou stocker, par calcul, 1 octet d'information. Les plus petits « fragments » de bits ou d'octets sont donc utilisables.

Sur les supports de transmission de données

Débit de transmission

Le débit maximum d'un support de transmission de données (exprimé en décibels par seconde, ou respectivement bits par seconde, ou octets par seconde) est la somme des produits de la fréquence d'échantillonnage de chaque signal transporté (exprimée en hertz) par la qualité de ce signal (exprimée en décibels, ou respectivement bits ou en octets). Selon les technologies employées, il existe toujours un compromis entre qualité et fréquence d'échantillonnage de chaque signal, le meilleur compromis (qui apporte le débit maximum) étant obtenu quand le produit qualité-fréquence est maximum.

Le débit (ou capacité temporelle d'informations) effectif d'un support de transmission de données (exprimé en décibels par seconde, ou respectivement en bits par seconde ou en octets par seconde) est toujours strictement inférieur à ce débit maximum théorique qu'il est impossible de dépasser sur le même support (à condition d'avoir pris en compte tous les signaux détectables sur ce support).

L'unité la plus employée pour mesurer le débit d'un support de transmission de données est le bit par seconde (et ses multiples normalisés en puissances de 10 comme le kilobit par seconde symbolisé kbit/s ou kb/s, voire kbps en anglais) pour les supports physiques, mais l'usage de l'octet par seconde (et de ses multiples normalisés en puissances de 10, ou traditionnels en puissances de 2) est très courant pour les applications et protocoles de transfert de fichiers.

Quantité d'informations transmise

La quantité d'informations maximale transmise dans un intervalle de temps sur un support de transmission de données est l'intégration de son débit sur chaque position temporelle dans cet intervalle où les échantillons sont transmis.

La quantité d'informations effectivement transmise est toujours strictement inférieure à cette quantité maximale théorique. Elle se mesure en décibels, ou respectivement en bits ou en octets (ou ses multiples normalisés en puissances de 10, ou conventionnels en puissances de 2). L'unité la plus utilisée est le kilooctet traditionnel, symbolisé ko en français.

Sur les supports de stockage d'informations

Capacité par unité spatiale

On effectue le même raisonnement pour la capacité des supports statiques de stockage, en considérant que chaque position de la longueur (ou respectivement de la surface ou du volume) de ce support définit un certain nombre de signaux ayant chacun une qualité exprimée en bits, octets ou décibels, la nature de ces signaux détectables dépendant des capteurs employés (conversion de signaux électriques en signaux magnétiques, optique…), de leur qualité (c'est-à-dire leur précision intrinsèque), et du niveau de bruit environnant (dépendant aussi de la construction du support, notamment son isolation).

Le domaine spatial de stockage le plus utilisé aujourd'hui est la surface (disquettes, disques durs, optiques, magnéto-optiques, mémoires électroniques…), mais la longueur est encore utilisée (bandes magnétiques). Le domaine spatial du volume est encore à l'état expérimental (stockage optique dans un cristal, holographique…), mais commence à apparaître sur les disques optiques multicouche (les unités correspondantes restent encore surfaciques).

On peut alors parler de capacité linéaire (ou respectivement surfacique ou volumique) d'informations exprimée en décibels par mm (ou respectivement par mm2 ou par mm3) ou donc aussi en bits par mm (ou respectivement par mm2 ou par mm3) ou encore en octets par mm (ou respectivement par mm2 ou par mm3), l'unité de longueur (ou respectivement de surface ou de volume) remplaçant la seconde dans le paragraphe précédent, et selon les mêmes formules de Nyquist-Shannon pour la qualité des signaux échantillonnés sur ce support. Pour les disques durs, disques optiques ou magnéto-optiques, l'unité de capacité surfacique la plus utilisée est le bit par mm2, ou ses multiples normalisés en puissances de 10 comme le kilobit par mm2, symbolisé kb/mm2.

On trouve cependant aussi mention du multiple normalisé kilooctet par mm2 (ko/mm2 en français). Les unités traditionnelles ne sont jamais employées à ce niveau, au contraire des fabricants de mémoires qui préfèrent les unités traditionnelles en puissances de 2 comme le kilooctet par mm2 (qui parfois comptent plutôt en nombre de transistors par unité de surface, mais cette fois avec les multiples conventionnels en puissances de 10, sachant qu'un bit d'information stockée nécessite souvent deux transistors).

Capacité totale du support

La capacité totale d'informations maximale de ce support, exprimée en décibels, bits ou octets, est l'intégration de cette capacité linéaire (ou respectivement surfacique ou volumique) sur chaque position de la longueur (ou respectivement de la surface ou du volume) de ce support.

La capacité totale d'informations effective d'un support de stockage se mesure le plus souvent en octets (ou ses multiples normalisés en puissances de 10, comme le kilooctet, symbolisé conventionnellement ko sur les disques durs). Mais le plus souvent l'interface de ce support se fait par secteurs de taille conventionnelle de 512 octets, et donc la capacité d'utilisation de ce support dans les systèmes d'exploitation se mesure plus souvent et de façon plus pratique avec les multiples traditionnels.

Notes et références

  1. Le Petit Robert relève que la synonymie entre byte et octet est abusive. Voir l'article sur le byte.
  2. Voir l'entrée « mésusage » sur le Wiktionnaire.
  3. Voir l'article sur les préfixes binaires.
  4. « Le binaire, pourquoi faire !!! », sur le site de-bric-et-de-broc.
  5. (en) « Prefixes for binary multiples », sur le site de la CEI.

Voir aussi

Articles connexes

  • Portail de l’informatique
  • Portail des mathématiques
This article is issued from Wikipédia - version of the Friday, October 16, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011