Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Invariance de Lorentz

Invariance de Lorentz

Cet article est une ébauche concernant la relativité.
Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.
Consultez la liste des tâches à accomplir en page de discussion.
Cet article ne cite pas suffisamment ses sources.
Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » (modifier l'article, comment ajouter mes sources ?).
Cet article ou cette section peut contenir un travail inédit ou des déclarations non vérifiées.
Vous pouvez aider en ajoutant des références. Voir la page de discussion pour plus de détails.

Dans le cadre de la relativité restreinte (qui reste valable aussi en relativité générale), une quantité est dite invariante de Lorentz, on dit aussi scalaire de Lorentz, ou invariant relativiste, lorsqu'elle n'est pas modifiée sous l'application d'une transformation de Lorentz. Cela revient à dire que sa valeur est la même dans tous les référentiels galiléens.

Le premier exemple de quantité invariante de Lorentz est la métrique de Minkowski[1] \eta_{\mu\nu}\,. Si on considère une transformation de Lorentz représentée par \Lambda\,[2], alors on a par définition des transformations de Lorentz


\Lambda^t\eta\Lambda=\eta
\,

si on utilise la notation matricielle, ou


{\Lambda^{\mu'}}_\mu{\Lambda^{\nu'}}_\nu\eta_{\mu' \nu'}=\eta_{\mu\nu}
\,

si on adopte la notation d'indices plus commune en physique. On a adopté pour cette dernière la convention de sommation d'Einstein qui somme implicitement selon les quatre directions tout indice apparaissant à la fois en haut et en bas d'une expression.

À partir de cette quantité invariante fondamentale on peut en construire d'autres. Par exemple si on considère le quadrivecteur d'énergie-impulsion[3],


P^{\mu}=
\begin{pmatrix}
E\\
\vec{p}\,c
\end{pmatrix}
\,

constitué de l'énergie E\, et de l'impulsion \vec{p}\,. Il n'est pas invariant de Lorentz car il se transforme de la façon suivante[4]


P^\mu\rightarrow{\Lambda^\mu}_\nu P^\nu
\,

Mais par contre on peut construire la quantité quadratique suivante par contraction de ce quadrivecteur en utilisant la métrique


P^2\equiv P^{\mu}P_{\mu}\equiv\eta_{\mu\nu}P^{\mu}P^{\nu}=-E^2+p^2c^2=-m^2c^4
\,

qui définit la masse en relativité restreinte. Cette quantité est un invariant de Lorentz, car si P^\mu subit une transformation de Lorentz, la quantité P^\mu P_\mu devient :

P^\mu P_\mu=\eta_{\mu\nu}P^\mu P^\nu\rightarrow\eta_{\mu\nu}({\Lambda^\mu}_\rho P^\rho)({\Lambda^\nu}_\sigma P^\sigma)=\eta_{\rho\sigma}P^\rho P^\sigma=P^\rho P_\rho

où on a utilisé l'invariance de la métrique énoncée au début de cette page pour l'avant-dernière étape du calcul. Comme \mu et \rho sont des indices muets, on a bien retrouvé la norme du quadrivecteur P, qui est donc une grandeur invariante[5].

Dans cette démonstration, nous n'avons à aucun moment utilisé l'expression explicite de P, ce qui signifie que la norme de n'importe quel quadrivecteur est une grandeur conservée par les transformations de Lorentz.

Le fait qu'une quantité soit invariante permet d'obtenir des résultats intéressants en choisissant des référentiels particuliers. Par exemple, si on considère le cas d'une particule de masse non-nulle m\, alors on peut considérer le référentiel de repos dans lequel on a \vec{p}=0\,. On obtient alors la célèbre identité


E=mc^2
\,

Par contre dans le cas d'une particule de masse nulle, comme le photon, il n'est pas possible de trouver un tel référentiel mais on a alors la relation


E=pc
\,.

Notes

  1. On utilise par la suite ici la signature (-,+,+,+)\, pour la métrique.
  2. C'est une matrice 4\times 4.
  3. Lorsqu'on se place a priori dans le cadre de la mécanique relativiste il est d'usage d'oublier le préfixe quadri et de parler plus simplement de vecteur ou dimpulsion.
  4. c'est la définition même d'un vecteur
  5. Invariant sous-entend 'par transformation de Lorentz'. Ne pas confondre avec conservé qui signifie constant dans le temps. La masse d'une particule élémentaire est invariante. En l'absence d'actions extérieures, son vecteur énergie-impulsion est conservé (mais pas invariant)

Voir aussi

Articles connexes


  • Portail de la physique
This article is issued from Wikipédia - version of the Tuesday, September 22, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011