On Amazon.it: https://www.amazon.it/Complete-Concordances-James-Bible-Azzur/dp/B0F1V2T1GJ/


Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Gammes et tempéraments dans la musique occidentale

Gammes et tempéraments dans la musique occidentale

Cet article ne cite pas suffisamment ses sources (février 2009).
Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » (modifier l'article, comment ajouter mes sources ?).

En musique, un tempérament est un système d'accord des intervalles d'une gamme musicale. Par extension on utilise le mot « gamme » pour désigner un tempérament (par exemple, la gamme tempérée pour le tempérament égal).

Les tempéraments servent à l'accordage des instruments à sons fixes, c'est-à-dire la majorité des instruments, sauf, principalement, les instruments à cordes sans frettes (violons, guitares sans frettes), le trombone, la voix.

Un tempérament est un système d'accord construit par altération d'une gamme naturelle (une gamme basée sur des intervalles purs)[1]. On parle donc d'accord pour un système basé sur des intervalles acoustiquement justes (« accord pythagoricien ») et de tempérament pour les systèmes comportant des intervalles raccourcis (« tempérament mésotonique »)[2].

Le tempérament égal, le système d'accord utilisé sur la quasi-totalité des instruments modernes, espace tous les demi-tons de manière égale.

Les écarts introduits par les tempéraments ne sont pas toujours facilement perceptibles par les oreilles non entraînées. De manière générale, quand ils sont anciens (exemple : mésotonique), ils sont assez facilement perceptibles, donnant parfois une coloration très prononcée, et à l'inverse, plus ils sont modernes, plus ils ont tendance, en général, à se rapprocher relativement du tempérament égal, et ils sont alors plus difficilement perceptibles.

Cependant, ces écarts, même faibles, structurent la perception globale du morceau : les instruments accordés sur des tempéraments inégaux restituent la mélodie avec une atmosphère tantôt plus douce, plus dure ou mélancolique, colorée par la tonalité dans laquelle ils jouent.

Histoire

Les tempéraments utilisés en occident sont chronologiquement :

  • l'accord pythagoricien, de l'Antiquité jusqu'à la musique médiévale ;
  • le tempérament mésotonique à tierces pures, pour la musique de la Renaissance ;
  • les tempéraments (dits irréguliers, inégaux, baroques ou anciens) que certains appellent improprement « tempéraments de transition », pour la musique baroque (entre la Renaissance et la fin du XVIIIe) ;
  • le tempérament égal, à partir de la musique romantique (XIXe) jusqu'à aujourd'hui ;
  • divers systèmes dont les tempéraments par division multiple (qui ont exploré la division de l'octave par un nombre d'intervalles différent de douze pour tenter d'améliorer la pureté de certains intervalles), pour la musique contemporaine (en plus du tempérament égal).

Jusqu'à la fin du Moyen Âge, la théorie musicale ne reconnaissait comme consonants que les intervalles d’unisson, d’octave, de quinte et de quarte. La tierce majeure en était exclue, car la tierce pythagoricienne est relativement fausse, étant supérieure à la tierce pure d’un comma syntonique, ce qui fait une différence rédhibitoire. À cette époque, les musiciens commencèrent à admettre la consonance de la tierce, ce qui conduisit à abandonner le tempérament pythagoricien au profit des tempéraments mésotoniques, puis des tempéraments inégaux. Le nombre de sept notes diatoniques par octave fermement établi, les théoriciens ont pu formaliser des gammes « naturelles » — dont celle de Zarlino — assez proches de la gamme pythagoricienne mais attribuant un rôle important à la tierce et à d’autres rapports harmoniques simples. Les intervalles divisant l’octave restaient inégaux et un autre inconvénient surgissait : la division de la tierce majeure en un ton majeur et un ton mineur différents. La modulation était pratiquée, mais pas dans tous les tons – et ne pouvait guère l’être.

Le tempérament égal généralisé depuis le milieu du XIXe siècle[2], succède à de nombreux tempéraments très inégaux où certains intervalles sonnaient purs, mais d'autres très faux (voir quinte du loup). Des tempéraments très variés ont donc vu le jour, favorisant certains intervalles ou certaines tonalités, au détriment des autres (chacun donnant une couleur spécifique). Ces tempéraments ont progressivement évolué depuis le début de la Renaissance jusqu'au XIXe siècle pour rendre le maximum d'intervalles acceptables, mais tous ne pouvant pas être purs en même temps. Le tempérament égal s'est finalement imposé, même si tous n'en étaient pas partisans au départ (Bach notamment).

Marc Texier illustre ainsi l'importance des tempéraments, dans son essai Une nouvelle frontière de la musique :

«Si pour l'essentiel de la musique médiévale, qui est vocale, la fausseté des tierces n'est pas un problème majeur, car bien sûr les chanteurs prennent instinctivement des libertés par rapport au carcan du tempérament en usage; les limites du tempérament pythagoricien[3] ont eu pour la musique instrumentale, et tout particulièrement la musique pour clavier, une incidence remarquable, retardant de près de trois siècles l'éclosion de la polyphonie sur ces instruments par rapport à la polyphonie vocale. Ce n'est qu'à partir du moment où de nouveaux tempéraments, multipliant les tierces justes, ont été utilisés que la littérature pour clavier a pu s'épanouir, à deux voix au XIVe siècle, à trois au XVe, alors que la musique vocale était à quatre parties dès la fin du XIIe.

Le choix d'un tempérament n'est donc en rien négligeable, il induit pour des siècles l'évolution de la musique.» [4]

Le nombre de tempéraments qui ont été inventés pendant la Renaissance et la période baroque est considérable ; ils peuvent se répartir entre les catégories suivantes, selon les principes mis en œuvre (mais d'autres critères de répartition sont possibles) :

  • les tempéraments mésotoniques ;
  • les tempéraments inégaux ;
  • le tempérament égal.

Le plus utilisé de nos jours pour la musique baroque est le tempérament de Vallotti (ou « Tartini-Vallotti »), en raison de son caractère peu marqué.


L'accord à tempérament égal a pu s'imposer petit à petit au XIXe siècle grâce à ce que :

  • La musique d'ensemble ne laisse généralement pas entendre de façon nette les consonances parfaites, et l'emploi du vibrato renforce cette tendance.
  • La musique a exploité à fond la modulation, et n'a plus voulu sacrifier certaines tonalités au profit d'autres. La gamme par tons et la musique atonale réclament absolument le tempérament égal.
  • Le mélodisme et la virtuosité ont continuellement gagné en importance, rendant l'exigence en matière de consonance moins grande que pour les polyphonies de la renaissance.
  • L'intonation changeante est plus difficile.

Problématique musicale

Accord des instruments avec des intervalles purs

Article détaillé : Gamme naturelle.

Les musiciens et les amateurs de musique s'accordent généralement à trouver consonants :

  • un son fondamental et l'un de ses premiers harmoniques ;
  • deux sons qui sont en rapport de fréquence rationnelle simple (par exemple : 3/2, 4/3, 5/3).

Le problème c'est qu'il n'est pas possible d'accorder un instrument à sons fixes sur plusieurs octaves en ayant à la fois tous les intervalles d'octaves, de quintes et de tierces purs (les intervalles aux rapports les plus simples). Si l'on accorde les notes d'un instrument à sons fixes (piano, flûte,...) avec le plus possible de ces rapports de fréquences rationnelles simples (intervalles purs), on obtient un ou plusieurs intervalles dissonants et donc non utilisables. Cet instrument ne peut jouer que dans les tonalités qui ne contiennent pas ces intervalles (ou alors il faut le réaccorder).

Les tempéraments sont nécessaires pour les instruments dits « à sons fixes » qui sont accordés une fois pour jouer toute une pièce musicale. La voix et les autres instruments n'ont pas cette contrainte mais doivent s'y adapter. Ainsi les instruments d'intonation libre peuvent jouer tous les intervalles purs. S'ils jouent dans un ensemble avec des instruments tempérés, un écart trop important des intonations peut entraîner des dissonances.

  • Le système de Pythagore, dont les notes sont définies par quintes pures à partir d'un ton de base fait entendre des quintes et des octaves parfaites, mais des tierces très médiocres.
  • Le système de Zarlino dont les notes sont définies par la qualité de leur consonance par rapport au ton de base fait entendre certaines tierces pures magnifiques, mais d'autres ne le sont pas.

« L'intonation juste a de tout temps été considérée par certains comme une chimère. Ils y voient, peut-être à raison, un caprice de mathématicien sans réel contenu musical. Il n'en demeure pas moins que cette « illusion » a longtemps fait l'objet d'une quête que Haynes n'hésite pas à comparer à celle du Graal. S'il est un point de l'espace-temps où cette quête avait quelque chance d'aboutir, il se situe à coup sûr dans l'une ou l'autre des cappelle et camerate de très haut niveau qui fleurissent dans l'Italie du XVIe siècle, ce microcosme qui voit « tous les praticiens, mus par l'autorité de Zarlino », rechercher assidûment la meilleure intonation possible. C'est à cette époque plus qu'à n'importe quelle autre que l'intonation juste a pu faire l'objet d'une pratique plus ou moins consciente et raisonnée. Seulement, une telle affirmation gagnerait en consistance si l'intonation juste était autre chose qu'une idée vague. Sa mise en pratique implique en effet des choix qui peuvent conduire à des résultats fort divers. C'est en vain qu'on cherche, dans la littérature ancienne ou moderne, un mode d'emploi permettant de l'appliquer à des exemples musicaux concrets. »[5]

Les tempéraments

Les accords à bases d'intervalles purs ne posaient pas de problèmes dans la musique modale, où l'accordage même imparfait permettait néanmoins de jouer un morceau entier dans une tonalité unique.

Mais au fur et à mesure du développement de la musique, qui utilisait de plus en plus les transpositions, les modulations, et les échelles chromatiques, il devenait compliqué de limiter les instruments à quelques modalités. Il n'était plus possible de voir apparaître dans ces transpositions les intervalles dissonants entre certains degrés de la gamme naturelle : de ce fait, la transposition ou la modulation entre des tonalités trop différentes (par leur coloration ou leurs intervalles dissonants) n'est pas toujours possible.

Pour réduire ces dissonances, il est nécessaire d'ajuster de corriger l'intervalle entre certaines notes. C'est sur la base de ce consensus - à l'origine, inconscient - qu'ont été élaborées la gamme heptatonique occidentale et ses différentes variantes. Nombre d'instruments accordés sur des tempéraments anciens permettent toutes les modulations que l'on veut, mais avec une forte coloration de la justesse sur les tonalités éloignées, coloration que certaines oreilles modernes ne trouvent guère acceptables.

Seul le tempérament égal permet n'importe quelle transposition sans aucune coloration (utile pour l'accompagnement des chanteurs), mais ceci au prix d'un « aménagement » de la justesse, qui n'a pas toujours séduit les musiciens.

Construction

Cette question d'esthétique musicale se traduit assez directement en termes mathématiques, du fait que les sons harmoniquement consonants sont dans un rapport de fréquence s'exprimant par une fraction simple. Il y a plusieurs aspects de la question, mais les deux principaux problèmes numériques (qui se reflètent dans la pratique musicale) sont ceux-ci:

  • En partant d'une note donnée, douze quintes diffèrent quelque peu de sept octaves. L'écart (de l'ordre d'un huitième de ton) est le comma pythagoricien ou ditonique, de 23,48 cents (centième de demi-ton), soit de l'ordre de deux cent par quinte.
  • En partant d'une note donnée, quatre quintes successives ne donnent pas tout à fait une tierce pure. Par exemple, la succession do-sol-ré-la-mi donne un mi différent de celui obtenu par une tierce pure). L'écart est le comma syntonique, de 21,51 cent, donc un peu moins dissonant que le précédent par lui-même, mais répartit sur quatre intervalles au lieu de douze, conduisant à un écart beaucoup plus notable de cinq cent par tierce.

La quasi-équivalence entre ces deux commas est un fait mathématique remarquable. (23,5 cents pour le comma pythagoricien et 21,5 cents pour le comma syntonique). De fait, la plupart des tempéraments inventés au cours de l'histoire se chargent de répartir essentiellement le comma pythagoricien dans le cycle des quintes, mais, pour autant, l'essentiel de ces tempéraments travaillent à une plus grande justesse des tierces (dont la fausseté s'illustre par le comma syntonique) tout en gardant les quintes acceptables. La différence entre ces deux commas est le schisma, très petit intervalle de 2 cents, dont on tient parfois compte dans la réalisation de certains tempéraments au clavecin.

Illustration de Le istitutioni harmoniche, un clavier avec 19 touches par octave.

De façon annexe, les tempéraments ont souvent eu pour but complémentaire de faire coïncider les dièses et les bémols, afin d'améliorer la « jouabilité » des instruments. Il faut toutefois noter que cette préoccupation n'a pas toujours prévalu, et que des instruments à clavier qui disposaient de touches distinctes pour les deux altérations ont été construits avant le XVIIIe siècle.

Cette constatation a imposé de trouver des compromis pour pouvoir pratiquer la musique sur de tels instruments. On appelle « tempérament » de tels compromis qui peuvent tendre :

  • à éliminer autant que possible l'effet sensible des commas, en plaçant ou en répartissant ceux-ci dans des intervalles inusités ;
  • à simplifier les échelles musicales en confondant les notes enharmoniques ;
  • à permettre ou faciliter les transpositions et modulations.

Évolution des tempéraments

Accord pythagoricien

Article détaillé : Accord pythagoricien.
Quinte du loup dans le cycle des quintes

L'accord pythagoricien est construit par concaténation de quintes justes. Mais après douze quintes une telle série dépasse l'octave d'un comma.

Pour conserver les quintes justes il faut accepter une quinte réduite de ce comma sachant qu'elle est inutilisable : c'est la « quinte du loup » désagréable à l'oreille. Aussi, la tierce pythagoricienne, plus grande que la tierce majeure, est musicalement instable[6].

Gamme de Zarlino

Article détaillé : Gamme naturelle.

Gioseffo Zarlino (15171590) fut le premier à reconnaitre l'importance de la tierce majeure comme intervalle fondateur de l'harmonie. La juste intonation qu'il conceptualise (voir Zarlino) est induite par les imperfections constatées dans l'accord pythagoricien et le souhait d'avoir le maximum d'intervalles sonnant juste dans un système à douze intervalles par octave.

Il élabore une gamme naturelle en reconnaissant donc une place importante à l'intervalle de tierce « pure », et plus généralement aux intervalles purs, c'est-à-dire correspondant à un rapport de fréquence s'exprimant par une fraction simple.

La tierce est basée sur des harmoniques qui multiplient ou divisent la fréquence par cinq, au lieu d'un facteur trois comme dans la gamme de Pythagore. Entre la quarte et le ton majeur, l'introduction de facteurs « cinq » permet de travailler sur les rapports 5/4 (=1,25) et 6/5 (= 1,2). Ces deux rapports sont particulièrement simples, acoustiquement ils sonnent bien avec la fondamentale. Enfin, puisque (5/4) x (6/5) = 6/4 = 3/2, on voit que leur addition donne une quinte. Ces intervalles, respectivement nommés « tierce majeure » et « tierce mineure » vont jouer un rôle de premier plan, avec l'octave et la quinte, dans la construction des gammes naturelles, qui ont de nombreuses variantes.

Par rapport à la gamme tempérée, les écarts de la gamme de Zarlino sont (en supposant la gamme accordée sur une tonique de do) :

Note do mi mi fa fa / sol sol la la si si
Rapport1/1 16/15 9/8 6/5 5/4 4/3 45/32 ou 64/45 3/2 8/5 5/3 9/5 15/8
Écart 0 +11.73 +3.91+15.64-13.69-1.96 ± 9.78 +1.96 +13.69-15.64 +17.6 -11.73

On voit que les écarts par rapport à la gamme tempérée sont assez importants sur les tierces et sixtes (de l'ordre de 14 cent), ainsi que sur la septième (17 cent). On peut en fait lire ces écarts dans l'autre sens: par rapport à une gamme formée d'intervalles purs, c'est le degré de fausseté perceptible sur la gamme tempérée. Ces intervalles commencent à être audibles pour une oreille exercée.

Les tempéraments mésotoniques

Article détaillé : Tempérament mésotonique.

On parle de tempéraments réguliers lorsque les corrections apportées aux intervalles s'appliquent également à tous, aucun intervalle particulier n'étant musicalement juste : ce sont donc les tempéraments mésotoniques et le tempérament égal (qui est un mésotonique particulier). Les tempéraments inégaux sont dits « irréguliers ».

L'idée des tempéraments mésotoniques est de diminuer toutes les quintes d'une certaine fraction du comma syntonique, de façon à rendre plus pures les tierces majeures sans pour autant trop fausser les quintes (l'écart résiduel venant du comma pythagoricien qui reste toujours concentré sur la quinte du loup).

Puisque la correction s'applique uniformément à toutes les quintes, les tierces majeures engendrées restent toujours égales à deux tons majeurs (les proportions sont conservées) ce qui n'est pas le cas avec les tempéraments inégaux. C'est cette propriété du « ton moyen » qui est à l'origine du terme « mésotonique » - on utilise aussi l'expression « tempérament régulier ».

Le tempérament mésotonique à quart de comma syntonique est le plus utilisé. S'il rend les tierces plus pures, il fausse légèrement les quintes (ainsi d'ailleurs que les quartes), et ceci n'est pas indifférent car l'oreille est plus sensible à la pureté des quintes qu'à celle des tierces.

D'autres tempéraments mésotoniques présentent un meilleur compromis en répartissant la « fausseté » de façon plus équilibrée entre tierces et quintes : c'est le cas du tempérament à 1/6 ou 1/8 de comma. A l'extrême, le tempérament à douzième de comma pythagoricien fait disparaître la quinte du loup : c'est le tempérament égal.

Les tempéraments mésotoniques sont assez pratiqués dans la musique baroque, ils permettent des modulations acceptables dans les tons voisins de la tonique.

Les tempéraments inégaux

Article détaillé : Tempérament inégal.

L'idée des tempéraments inégaux vient du fait que, dans la pratique musicale, et spécialement à l'époque baroque avant que ne se généralise l'emploi de la gamme au tempérament égal, tous les intervalles de quinte et de tierce majeure ne sont pas également usités.

On va donc essayer de réduire les effets indésirables du comma syntonique, voire du comma pythagoricien, en les divisant de telle manière qu'on améliore la qualité de certains intervalles de quintes (donc de tierces), les intervalles les moins pratiqués pouvant se satisfaire de consonances moins bonnes.

À propos du clavecin et du clavicorde, C.P.E. Bach écrit : « Les deux sortes d'instruments doivent être bien tempérés : en accordant les quartes et les quintes, avec les tierces majeures et mineures et les accords complets pour preuves, il faut affaiblir un tant soit peu la justesse des quintes, en sorte que l'oreille la perçoive à peine et que les vingt quatre tons soient tous utilisables. »

Les possibilités sont extrêmement nombreuses et cette étude a mobilisé un grand nombre de théoriciens aux XVIIe et XVIIIe siècles, chacun proposant sa propre solution censée représenter le meilleur compromis : Werckmeister, Chaumont, Kirnberger, Rameau, Vallotti etc.

Dans le cadre d'un tempérament inégal, toutes les quintes (et conséquemment toutes les tierces) n'ont pas la même valeur en termes de rapports de fréquences : chaque tonalité possédait donc une « couleur sonore » particulière. Joie, tristesse, sérénité, mélancolie, etc. s'expriment dans le choix de tonalités censées mieux les représenter : ce critère est mis en pratique par les grands compositeurs tels que Bach et Couperin qui y attachent beaucoup d'importance. Tous ne s'accordent d'ailleurs pas exactement sur le caractère prêté à chaque tonalité. Le choix du tempérament utilisé peut, à l'inverse, être déterminé par la tonalité choisie et les modulations envisagées au cours d'une même pièce, certains étant mieux appropriés que d'autres.

Ces préoccupations ont complètement disparu depuis que la gamme tempérée a été adoptée de façon universelle par les compositeurs. Mais les tempéraments inégaux sont particulièrement adaptés à l'exécution du répertoire baroque, et les ensembles spécialisés les pratiquent couramment.

Le tempérament égal (gamme tempérée)

Article détaillé : Gamme tempérée.

La gamme au tempérament égal, ou simplement tempérament égal, ou encore gamme tempérée (appellation contestable car toutes les gammes aux tempérament inégaux sont tempérées) est de nos jours utilisée de façon presque universelle dans la musique occidentale (à noter, cependant, que le piano sort de l'échelle du tempérament égal dans l'aigu : voir Inharmonicité du piano). Seuls les musiciens jouant sur des instruments dits « anciens » utilisent d'autres systèmes, selon le style en cours à l'époque de la composition.

Le tempérament égal, qui s'est imposé avec le changement de goût à l'époque de la Révolution française (voir Inégalités dans la musique baroque) consiste, pour ainsi dire, à « trancher le nœud gordien » des inconvénients de tous les autres systèmes qui tentaient des compromis entre justesse de certains intervalles, fausseté pas trop marquée des autres, possibilités de transposition et/ou de modulation. Connu depuis longtemps (déjà mentionné au XVIe siècle, par Mersenne et par Praetorius, à propos des violes), mais peu utilisé alors, il consiste tout simplement à diviser l'octave en douze intervalles chromatiques tous égaux.

Cette idée simple permet toutes les transpositions et toutes les modulations imaginables, puisque toutes les notes sont équivalentes quand on les considère comme toniques. Elle présente deux inconvénients. Le premier, qui est de taille, explique la réticence des musiciens à l'adopter avant la période dite « classique » : à l'exception des octaves, tous les intervalles sont légèrement faux. Toutefois, hormis certains cas particuliers concernant principalement des tierces majeures (voir : Justesse des tierces), les écarts sont suffisamment faibles pour être admissibles. Et l'habitude aidant, puisque de nos jours quasiment toutes les musiques que nous entendons l'utilisent, cette faible dissonance ne choque personne, et c'est au contraire les anciens tempéraments qui surprennent notre oreille lorsque nous les expérimentons pour la première fois. Le second inconvénient est que, dans le tempérament égal, toutes les tonalités ont la même couleur et ce n'est pas forcément ce que les musiciens recherchent. Chez Mozart, par exemple, le choix des tonalités conserve une grande importance, y compris dans toute sa musique de piano, ce qui va à l'encontre d'un système dans lequel toutes les tonalités sont strictement équivalentes.

Si l'on se rappelle qu'additionner des intervalles revient à effectuer des multiplications de rapports de fréquence, on voit que celui de l'octave égale celui du demi-ton chromatique élevé à la puissance douze ou encore que le rapport de fréquence du demi-ton chromatique vaut \sqrt[12]{2} en l'absence d'inharmonicité.

La gamme tempérée présente l'avantage d'être totalement "neutre" par rapport aux problèmes de transpositions, qui précisément justifient la présence de tempéraments. Les écarts des différentes gammes par rapport à la gamme tempérée permettent donc d'apprécier comment un tempérament particulier présentera des irrégularités dans ses différentes transpositions.

Tempérament par division multiple

Un clavier réalisant le tempérament à 19 intervalles égaux
Article détaillé : Tempérament par division multiple.

Plusieurs théoriciens ont conçu des tempéraments basés sur une division de l'octave en plus de douze intervalles élémentaires. Constatant que la division en douze intervalles égaux n' aboutit pas à la pureté des intervalles de quinte et de tierce, ils ont recherché si une division de l'octave en un nombre différent d'intervalles ne permettait pas de se rapprocher de cette pureté idéale. De fait, plusieurs schémas de division ont ainsi été déterminés, qui permettent parfois d'améliorer aussi la qualité des autres notes.

Ces approches très théoriques ne se sont pas popularisées à ce jour.

Tableaux comparatifs

Comparaison des fréquences de notes de la gamme chromatique dans différents systèmes

Premier tableau : même la

Fréquences des notes dans 3 systèmes, la=440 Hz
Note Gamme de Zarlino Gamme de Pythagore Gamme tempérée
do 264,00 260,74 261,63
do 275,00 278,44 277,18
297,00 293,33 293,66
mi 316,80 309,03 311,13
mi 330,00 330,00 329,63
fa 352,00 347,65 349,23
fa 371,25 371,25 369,99
sol 396,00 391,11 392,00
sol 412,50 417,66 415,30
la 440,00 440,00 440,00
si 475,20 463,54 466,16
si 495,00 495,00 493,88
do 528,00 521,48 523,25

Dans ce tableau :

  • la note la est commune à 440 Hz (diapason actuel)
  • les gammes naturelles sont représentées par la gamme de Zarlino à partir de do
  • la gamme de Pythagore est montée de telle façon que la quinte du loup soit entre sol et mi.

Second tableau : même do

Fréquences des notes dans 3 systèmes, do=264 Hz
Note Gamme de Zarlino Gamme de Pythagore Gamme tempérée
do 264,00 264,00 264,00
do 275,00 281,92 279,70
297,00 297,00 296,33
mi 316,80 312,89 313,95
mi 330,00 334,13 332,62
fa 352,00 352,00 352,40
fa 371,25 375,89 373,35
sol 396,00 396,00 395,55
sol 412,50 422,88 419,07
la 440,00 445,50 443,99
si 475,20 469,33 470,39
si 495,00 501,19 498,37
do 528,00 528,00 528,00

Dans ce tableau :

  • la note do commune à 264 Hz donne la à 440 Hz (diapason actuel) dans la juste intonation
  • les gammes naturelles sont représentées par la gamme de Zarlino à partir de do
  • la gamme de Pythagore est montée de telle façon que la quinte du loup soit entre sol et mi.

Troisième tableau

Intervalles importants dans 3 systèmes
Intervalle Gamme de Zarlino Gamme de Pythagore Gamme tempérée
Quinte do-sol 1,500 1,500 1,498
Loup sol-mi 1,536 1,480 1,498
Tierce majeure do-mi 1,250 1,266 1,260

Dans ce tableau, les intervalles sont calculés à partir du tableau précédent :

  • dans la gamme de Zarlino, la quinte et la tierce sont justes, la quinte du loup est horriblement fausse
  • dans la gamme de Pythagore la tierce et la quinte du loup sont légèrement fausses
  • dans la gamme tempérée, il n'y a pas de quinte du loup ; les quintes sont bonnes, et les tierces un peu trop grandes

Notes et références

  1. Pierre-Yves Asselin, Musique et tempéraments (Québec), éditions Jobert, 2000
  2. 1 2 Abromont 2001, p. 550
  3. l'expression « tempérament pythagoricien » est un abus de langage assez fréquent, mais la gamme ou échelle pythagoricienne n'est pas, à proprement parler, un « tempérament ».
  4. Homestudio - revue audiolab
  5. Essai sur la question de la juste intonation par Olivier Bettens : Utopie ou réalité?
  6. Abromont 2001, p. 299

Voir aussi

Articles connexes

  • Acoustique musicale
  • Consonance
  • Quinte du Loup
  • Justesse des tierces
  • Inharmonicité du piano
  • Tempérament égal à quintes justes
  • Liste des gammes et modes
  • Cantillation

Bibliographie

Liens externes

  • Les Tempéraments, échelles sonores, micro-intervalles par Marc Texier
  • « Intonation juste » à la Renaissance : idéal ou utopie ? par Olivier Bettens : esquisse d'un modèle fondé sur la théorie de Zarlino
  • Le Tempérament musical, partie 1 et partie 2 sur macmusic.org
  • (en) Calculateur et analyseur de tempéraments : feuille de calcul à télécharger gratuitement, permettant tous les calculs de tempéraments.
  • (fr) Audiolexic, le Wiki consacré à l'audio et à la musique
  • Pourquoi n'ai-je jamais rien compris au solfège ? par Xavier Hubaut
    Comparaison de diverses définitions et constructions de gammes (pentatonique, dodécatoniques Pythagore, Zarlino, tempérée, et autres
  • Construire une bonne gamme musicale par Léo Zaradzki : vulgarisation synthétique des principaux systèmes musicaux.
  • La Théorie des Champs Scalaires de Mathius Shadow-Sky : système de transformation multiscalaire faisant suite à la théorie tonale, sérielle et stochastique tempérée de l'échelle octaviante de 12 1/2 tons. Le système inclut une approche tempérée des échelles nonoctaviantes, base des modes multiscalaires et de la nouvelle « artmonie » qui en résulte tel un réseau de connexions entre échelles, modes et gammes en très grand nombre qui interagissent et opèrent diverses transformations « artmoniques ».


  • Portail de la musique
  • Portail de la musique classique
This article is issued from Wikipédia - version of the Thursday, July 23, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011

Static Wikipedia (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2007 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -

Static Wikipedia 2006 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu

Static Wikipedia February 2008 (no images)

aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu