Web Analytics Made Easy - Statcounter
Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Algèbre graduée

Algèbre graduée

Cet article est une ébauche concernant l'algèbre.
Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.
Page d'aide sur l'homonymie Pour les articles homonymes, voir Algèbre (homonymie).

En mathématiques, en algèbre linéaire, on appelle algèbre graduée une algèbre dotée d'une structure supplémentaire, appelée graduation.

Définition

Soit A une algèbre sur un corps (ou plus généralement sur un anneau) K. Une graduation sur A est la donnée d’une famille de sous-espaces vectoriels (A_i)_{i\in\N} de A vérifiant :

  • A = \bigoplus_{i\in\N}A_i
  • \forall  i,j\in\N,A_iA_j\subset A_{i+j}, et donc \forall \left[ i,j\in\N,x \in A_i, y \in A_j \right], \ \ x \times y \in A_{i+j}.

L’algèbre A est alors dite graduée (parfois ℕ-graduée, comme cas particulier de la notion d'algèbre M-graduée pour un monoïde M[1]).

Les éléments de Ai sont dits homogènes de degré i. Un idéal est dit homogène si, pour chaque élément a qu'il contient, il contient également les parties homogènes de a. Cela revient à dire que I est engendré par des éléments homogènes.

Tout anneau (non gradué) A peut être doté d'une graduation en posant A0 = A et Ai = 0 pour tout i > 0. Cette structure est appelée graduation triviale de A.

Une application f entre des algèbres graduées A et B (sur le même corps) est un homomorphisme d'algèbres graduées[1] si f(A_i)\subset B_i pour tout i.

Exemples

  • L'anneau de polynômes en plusieurs indéterminées K[X1, … , Xn], où les éléments homogènes de degré n sont les polynômes homogènes de degré n.
  • L'algèbre tensorielle T(V) sur un espace vectoriel V, où les éléments homogènes de degré n sont les tenseurs de la forme v_1\otimes v_2\otimes\dots\otimes v_n.
  • L'algèbre symétrique (en) S(V) et l'algèbre extérieure Λ(V) sont des algèbres graduées, les éléments homogènes de degré n étant les images des éléments homogènes de T(V). Plus généralement, si un idéal I d'une algèbre graduée A est homogène, le quotient A/I est naturellement gradué par
    (A/I)_i=A_i/(I\cap A_i).

Notes et références

  1. 1 2 N. Bourbaki, Algèbre (lire en ligne), p. III.30.

Article connexe

Algèbre différentielle graduée (en)

  • Portail de l’algèbre
This article is issued from Wikipédia - version of the Wednesday, September 23, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011