Web Analytics Made Easy - Statcounter
Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Neonatal respiratory distress syndrome - MedlinePlus Medical Encyclopedia
Medical Encyclopedia

 

Medical Encyclopedia

Other encyclopedia topics:  A-Ag  Ah-Ap  Aq-Az  B-Bk  Bl-Bz  C-Cg  Ch-Co  Cp-Cz  D-Di  Dj-Dz  E-Ep  Eq-Ez  F  G  H-Hf  Hg-Hz  I-In  Io-Iz  J  K  L-Ln  Lo-Lz  M-Mf  Mg-Mz  N  O  P-Pl  Pm-Pz  Q  R  S-Sh  Si-Sp  Sq-Sz  T-Tn  To-Tz  U  V  W  X  Y  Z  0-9 

Neonatal respiratory distress syndrome

Contents of this page:

Alternative Names   

Hyaline membrane disease; Infant respiratory distress syndrome (IRDS); Respiratory distress syndrome in infants; RDS - infants

Definition    Return to top

Neonatal respiratory distress syndrome (RDS) is most commonly a complication seen in premature infants. The condition makes it difficult to breathe.

Causes    Return to top

Neonatal RDS occurs in infants whose lungs have not yet fully developed.

The disease is mainly caused by a lack of a slippery, protective substance called surfactant, which helps the lungs inflate with air and keeps the air sacs from collapsing. This substance normally appears in mature lungs.

It can also be the result of genetic problems with lung development.

The earlier a baby is born, the less developed the lungs are and the higher the chance of neonatal RDS. Most cases are seen in babies born before 28 weeks. It is very uncommon in infants born full-term (at 40 weeks).

In addition to prematurity, the following increase the risk of neonatal RDS:

The risk of neontal RDS may be decreased if the pregnant mother has chronic, pregnancy-related high blood pressure or prolonged rupture of membranes, because the stress of these situations cause the infant's lungs to mature sooner.

Symptoms    Return to top

The symptoms usually appear within minutes of birth, although they may not be seen for several hours. Symptoms may include:

Exams and Tests    Return to top

A blood gas analysis shows low oxygen and excess acid in the body fluids.

A chest x-ray shows respiratory distress. The lungs have a characteristic "ground glass" appearance, which often develops 6 to 12 hours after birth. Lung function studies may be needed.

Lab tests are done to rule out infection and sepsis as a cause of the respiratory distress.

Treatment    Return to top

High-risk and premature infants require prompt attention by a neonatal resuscitation team.

Despite greatly improved RDS treatment in recent years, many controversies still exist. Delivering artificial surfactant directly to the infant's lungs can be enormously important, but how much should be given and who should receive it and when is still under investigation.

Infants will be given warm, moist oxygen. This is critically important, but needs to be given carefully to reduce the side effects associated with too much oxygen.

A breathing machine can be lifesaving, especially for babies with the following:

It can also be lifesaving for infants with repeated breathing pauses. There are a number of different types of breathing machines available. However, the devices can damage fragile lung tissues, and breathing machines should be avoided or limited when possible.

A treatment called continuous positive airway pressure (CPAP) that delivers slightly pressurized air through the nose can help keep the airways open and may prevent the need for a breathing machine for many babies. Even with CPAP, oxygen and pressure will be reduced as soon as possible to prevent side effects associated with excessive oxygen or pressure.

A variety of other treatments may be used, including:

It is important that all babies with RDS receive excellent supportive care, including the following, which help reduce the infant's oxygen needs:

Infants with RDS also need careful fluid management and close attention to other situations, such as infections, if they develop.

Outlook (Prognosis)    Return to top

The condition often worsens for 2 to 4 days after birth with slow improvement thereafter. Some infants with severe respiratory distress syndrome will die, although this is rare on the first day of life. If it occurs, it usually happens between days 2 and 7.

Long-term complications may develop as a result of oxygen toxicity, high pressures delivered to the lungs, the severity of the condition itself, or periods when the brain or other organs did not receive enough oxygen.

Possible Complications    Return to top

Air or gas may build up in:

Other complications may include:

When to Contact a Medical Professional    Return to top

This disorder usually develops shortly after birth while the baby is still in the hospital. If you have given birth at home or outside a medical center, seek emergency attention if your baby develops any difficulty breathing.

Prevention    Return to top

Preventing prematurity is the most important way to prevent neonatal RDS. Ideally, this effort begins with the first prenatal visit, which should be scheduled as soon as a mother discovers that she is pregnant. Good prenatal care results in larger, healthier babies and fewer premature births.

Avoiding unnecessary or poorly timed cesarean sections can also reduce the risk of RDS.

If a mother does go into labor early, a lab test will be done to determine the maturity of the infant's lungs. When possible, labor is usually halted until the test shows that the baby's lungs have matured. This decreases the chances of developing RDS.

In some cases, medicines called corticosteroids may be given to help speed up lung maturity in the developing baby. They are often given to pregnant women between 24 and 34 weeks of pregnancy who seem likely to delivery in the next week. The therapy can reduce the rate and severity of RDS, as well as the rate of other complications of prematurity, such as intraventricular hemorrhage, patent ductus arteriosus, and necrotizing enterocolitis. It is not clear if additional doses of corticosteroids are safe or effective.

References    Return to top

Cloherty J, Stark A, Eichenwald E. Manual of Neonatal Care. 5th ed. Lippincott, Wilkins and Williams; 2003.

Cole FS. Defects in surfactant synthesis: clinical implications. Pediatr Clin North Am. Oct 2006; 53(5): 911-27.

Courtney SE. Continuous positive airway pressure and noninvasive ventilation. Clin Perinatol. Mar 2007; 34(1): 73-92.

Kinsella JP, Inhaled nitric oxide in the premature newborn. J Pediatr. Jul 2007; 151(1): 10-5.

Lampland AL. The role of high-frequency ventilation in neonates: evidence-based recommendations. Clin Perinatol. Mar 2007; 34(1): 129-44.

Stevens TP. Surfactant replacement therapy. Chest. May 2007; 131(5): 1577-82.

Update Date: 9/5/2007

Updated by: Alan Greene, MD, FAAP, Department of Pediatrics, Stanford UniversitySchool of Medicine, Lucile Packard Children's Hospital; Chief MedicalOfficer, A.D.A.M., Inc.

A.D.A.M. Logo

The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should be consulted for diagnosis and treatment of any and all medical conditions. Call 911 for all medical emergencies. Links to other sites are provided for information only -- they do not constitute endorsements of those other sites. Copyright 1997-2009, A.D.A.M., Inc. Any duplication or distribution of the information contained herein is strictly prohibited.


EDIZIONI DI PUBBLICO DOMINIO (HTML)

- La Sacra Bibbia

- Alighieri - La Divina Commedia

RISORSE DAL WEB:

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Standard E-books

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia HTML - CATALAN