Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Problème des sept ponts de Königsberg

Problème des sept ponts de Königsberg

54° 42′ 12″ N 20° 30′ 56″ E/54.70333, 20.51556 Le problème des sept ponts de Königsberg est un problème mathématique connu pour être à l'origine de la théorie des graphes. Résolu par Leonhard Euler en 1736[1], il se présente de la façon suivante :

La ville de Königsberg (aujourd'hui Kaliningrad) est construite autour de deux îles situées sur le Pregel et reliées entre elles par un pont. Six autres ponts relient les rives de la rivière à l'une ou l'autre des deux îles, comme représentés sur le plan ci-dessus. Le problème consiste à déterminer s'il existe ou non une promenade dans les rues de Königsberg permettant, à partir d'un point de départ au choix, de passer une et une seule fois par chaque pont, et de revenir à son point de départ, étant entendu qu'on ne peut traverser le Pregel qu'en passant sur les ponts.

Résolution du problème

Une telle promenade n'existe pas, et c'est Euler qui donna la solution de ce problème en caractérisant les graphes que l'on appelle aujourd'hui « eulériens » en référence à l'illustre mathématicien, à l'aide d'un théorème dont la démonstration rigoureuse ne fut en fait publiée par Carl Hierholzer qu'en 1873.

Ce problème n'a sous cette forme non généralisée qu'un intérêt historique, car pour ce cas, il est assez intuitif de démontrer que la promenade demandée n'existe pas. Pour voir cela, il suffit d'associer un graphe à la ville comme dans la figure ci-dessus et de supposer que la promenade recherchée existe. On peut alors, à partir de la promenade, ordonner les sept arêtes du graphe de façon que deux arêtes consécutives par rapport à notre ordre soient adjacentes dans le graphe (en considérant que la dernière et la première arête sont consécutives, puisqu'il y a retour au point de départ).

Ainsi tout sommet du graphe est-il nécessairement incident à un nombre pair d'arêtes (puisque s'il est incident à une arête il est aussi incident à l'arête précédente ou qui lui succède dans l'ordre). Mais le graphe a des sommets qui sont incidents à trois arêtes, d'où l'impossibilité.

Notons que même si on renonce à exiger le retour au point de départ, une promenade traversant une et une seule fois chaque pont n'existe pas. Elle existerait si au plus deux sommets du graphe, correspondant aux points à choisir respectivement comme départ et arrivée, étaient incidents à un nombre impair d'arêtes, or les sommets du graphe des ponts de Königsberg sont tous les quatre dans ce cas ; la promenade est donc impossible. Il suffirait cependant de supprimer ou de rajouter un pont quelconque pour que le graphe modifié permette des promenades tous ponts sans retour (seuls deux sommets restant d'incidence impaire). Et ce sont au moins deux ponts, bien choisis, qu'il faudrait ajouter ou retirer pour permettre la promenade avec retour initialement cherchée.

On peut donner à ce problème une solution moins théorique. Il suffit de remarquer qu'il y a quatre zones, les deux rives et les deux îles, chacune reliée aux autres par un nombre impair de ponts. Ce nombre impair fait que si l'on entre dans une région R, on doit y rester. Or on ne peut finir sa promenade dans plus d'une de ces quatre régions.

Notes et références

  1. Jean-Gabriel Ganascia, Le Petit Trésor : dictionnaire de l'informatique et des sciences de l'information, Flammarion, (lire en ligne)
  • Leonhard Euler, « Solutio problematis ad geometriam situs pertinentis » (1759), dans Mémoires de l'Académie des sciences de Berlin
  • Édouard Lucas, Récréations mathématiques, vol. I (1882), éd. Gauthier Villars, Paris : le « problème des sept ponts » fait l'objet de la « récréation nº 2 ».

Articles connexes

  • Graphe eulérien
  • Nœud gordien
  • Œuf de Colomb
  • Portail des mathématiques
  • Portail de l'informatique théorique
This article is issued from Wikipédia - version of the Thursday, September 24, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011