Web Analytics Made Easy - Statcounter
Privacy Policy Cookie Policy Terms and Conditions

[HOME PAGE] [STORES] [CLASSICISTRANIERI.COM] [FOTO] [YOUTUBE CHANNEL]


Apollonios de Perga

Apollonios de Perga

Page d'aide sur l'homonymie Pour les articles homonymes, voir Apollonios.
Apollonios de Perga
Naissance vers -262
Pergé, Empire séleucide (actuelle Aksu en Turquie)
Décès vers -190
Alexandrie, Égypte ptolémaïque (actuelle Égypte) (Égypte ptolémaïque)
Champs Astronomie, mathématiques
Renommé pour Sections coniques

Apollonios de Perga ou Apollonius de Perge (en grec ancien Ἀπολλώνιος / Apollốnios, v. 262 – v. 190 av. J.-C.) était un géomètre et astronome grec. Il serait originaire de Pergé (ou Perga, ou encore Pergè actuelle Aksu en Turquie). Il est considéré comme l'une des grandes figures des mathématiques hellénistiques.

Biographie

Apollonius serait né à Perge autour de 240 av. J.-C.[1]. Il enseigna à Alexandrie[1].

Une anecdote sur Apollonios raconte qu’il a été est atteint d’une véritable fièvre isopséphique, donnant une méthode pour calculer la valeur d’un vers d’Homère non pas seulement en additionnant les lettres qui le composent mais en les multipliant[réf. souhaitée].

Travaux

Apollonios est célèbre pour ses écrits sur les sections coniques : il a donné à l’ellipse, la parabole et l’hyperbole les noms que nous leur connaissons. On lui attribue en outre l’hypothèse des orbites excentriques pour expliquer le mouvement apparent des planètes et la variation de vitesse de la Lune.

Vitruve indique que l’araignée (l’astrolabe plan) aurait été inventée par Eudoxe de Cnide ou Apollonios[2].

Pappus d’Alexandrie a donné des indications sur une série d’ouvrages d’Apollonios perdus qui permirent la déduction de leurs contenus par les géomètres de la Renaissance. Sa méthode novatrice et sa terminologie, spécialement dans le domaine des coniques, a influencé plusieurs mathématiciens postérieurs dont François Viète, Kepler, Isaac Newton et René Descartes.

Ces travaux en font « avec Archimède et Euclide, ses prédécesseurs, [...] l’une des trois figures les plus éminentes de l’âge d’or de la mathématique hellénistique »[1].

Les Coniques

Traduction arabe des Coniques datant du IXe siècle (Bibliothèque bodléienne, MS. Marsh 667, fol. 162b et 164a).

Les Coniques ou Éléments des coniques consistent en un ensemble de huit livres dus à Apollonios. Les quatre premiers nous sont parvenus en grec, avec les commentaires d’Eutocios. Les livres V à VII ne nous sont connus, accompagnés des livres I-IV, que dans une traduction arabe due à Thābit ibn Qurra et revue par Nasir ad-Din at-Tusi ; le livre VIII a disparu. L’ensemble de cet ouvrage, avec une reconstitution du huitième livre, a été publié (texte grec et traduction latine), par Edmund Halley en 1710. Celui-ci a, de plus, traduit de l’arabe en 1706 deux autres ouvrages d’Apollonios : De rationis sectione.

L’analyse des Anciens

Outre les Coniques, Pappus mentionne plusieurs autres traités d’Apollonios (les titres en latin sont dus à Commandino) :

  1. Λόγου ἀποτομή, De rationis sectione (« Sur la section de rapport ») ;
  2. Χωρίου ἀποτομή, De spatii sectione (« Sur la section d’aire ») ;
  3. Διωρισμένη τομή, De sectione determinata (« Sur la section déterminée ») ;
  4. Ἐπαφαί, De tactionibus (« Les Contacts ») ;
  5. Νεύσεις, De Inclinationibus (« Les Inclinaisons »[3]) ;
  6. Τόποι ἐπίπεδοι, De Locis Planis (« Les Lieux plans »).

Ces traités, dont chacun comprenait deux livres, étaient compilés à l’époque où vivait Pappus avec les Coniques et trois ouvrages d’Euclide (le Livre des données, les Porismes et les Lieux plans) sous le titre générique de Trésor de l’Analyse.

Le propos de l’« analyse des Anciens », tel que l’expose Pappus dans le livre VII de sa Collection mathématique, était de trouver une construction à la règle et au compas d’un lieu géométrique donné, ou du moins d’inventorier les cas où une telle construction était possible. Malheureusement, Pappus n’a transmis que des résumés des livres d’Apollonios, de sorte que l’étendue et la portée des méthodes de l’analyse a fait l’objet de multiples gloses du XVIe au XVIIIe siècle. S’appuyant sur les indices donnés par Pappus et leurs spéculations personnelles, une pléiade de mathématiciens fameux se sont essayés à reconstruire les traités perdus d’Apollonios dans leur ordre original.

Sur la section de rapport

Les deux livres du traité De rationis sectione sont consacrés au problème suivant : « Étant données deux droites et un point sur chacune d’elle, mener depuis un troisième point une droite telle qu’elle découpe deux segments (entre chaque point donné et le point d’intersection) dont les longueurs soient dans un rapport donné. »

Sur la section d’aire

Les deux livres du traité De spatii sectione discutent la résolution d’un problème similaire au précédent : il s’agit cette fois de « découper deux segments dont le produit soit égal à un produit donné » ; dans la terminologie géométrique des Anciens, l’énoncé demande que les deux segments « déterminent un rectangle de surface égale à un rectangle donné ».

Une copie arabe de La Section de rapport fut retrouvée à la fin du XVIIe siècle par Edward Bernard (en) à la bibliothèque Bodléienne. Bien qu’il eût commencé la traduction de ce document, ce fut Halley qui la mena à terme, et qui la publia en 1706 avec sa reconstitution du De spatii sectione.

Sur la section déterminée

Le traité traduit par Commandino sous le titre De Sectione Determinata traite pour ainsi dire de problèmes à une dimension d’espace : il s’agit ici de construire sur une droite des segments qui soient dans un rapport donné[4].

Plus précisément, les problèmes abordés sont les suivants : « Étant donnés deux, trois ou quatre points sur une droite, trouver un point tel que les segments qu’il forme avec les autres points déterminent deux à deux des rectangles qui soient dans un rapport donné » ; ainsi :

  • si deux points A, B sont donnés, trouver M tel que \frac{MA^2}{MB^2} soit égal à un rapport k donné ;
  • si trois points A, B, C sont donnés, trouver M tel que \frac{MA \times MB}{MC^2} soit égal à un rapport k donné. Une variante étudiée par Apollonios consiste à donner, outre A, B, C, un segment PQ et à chercher le(s) point(s) M tel que \frac{MA \times MB}{MC \times PQ} = k ;
  • si quatre points A, B, C, D sont donnés, trouver M tel que \frac{MA \times MB}{MC \times MD} soit égal à un rapport k donné.

Parmi les mathématiciens qui ont cherché à retrouver la solution d’Apollonios, citons :

  • Snellius (Apollonius Batavus, Leyde, 1608) ;
  • Alexander Anderson d’Aberdeen, dans son supplément à Apollonius Redivivus (Paris, 1612) ;
  • et Robert Simson dans ses Opera quaedam reliqua (Glasgow, 1776), de loin la reconstitution la plus détaillée et la plus convaincante.

Les Contacts

Le traité De Tactionibus est consacré au problème générique suivant : « Trois [éléments (points, droites ou cercles ; éventuellement un point, une droite et un cercle ; ou deux droites et un cercle, etc.)] étant donnés de position, décrire un cercle passant par ces points, ou tangent à ces droites ou à ces cercles. »

Article détaillé : Problème des contacts.

Le cas le plus difficile et le plus intéressant historiquement parlant est celui où les trois données sont trois cercles. François Viète, à la fin du XVIe siècle, proposa ce problème (dit « problème d’Apollonius ») à Adrien Romain, qui ne put le résoudre qu’en utilisant une hyperbole auxiliaire pour la construction. Viète lui répondit en publiant une solution « à la règle et au compas » (c’est-à-dire conforme aux exigences de l’analyse des Anciens), dans son livre Apollonius Gallus (Paris, 1600)[5].

Les Inclinaisons

Le propos du livre intitulé De Inclinationibus[3] consiste à « insérer un segment de longueur donnée entre deux droites sécantes (ou deux cercles, ou une droite et un cercle), de telle façon que ce segment, prolongé, passe par un point donné ». Marin Ghetaldi et Hugo d’Omerique (Analyse géometrique, Cadix, 1698) se sont essayés à ce problème, mais la reconstitution la plus satisfaisante est sans doute celle de Samuel Horsley (1770).

Les Lieux plans

De Locis Planis contient un ensemble de propositions relatives à des lieux qui s’avèrent être des droites ou des cercles. Comme Pappos d'Alexandrie ne donne que des cas particuliers de ce type de problème, les géomètres modernes ont longtemps été réduits aux conjectures pour trouver l’idée directrice de cette catégorie d’énoncés. Aussi chacun y est-il allé de son interprétation, à commencer par Pierre de Fermat[6] (1636, publiée finalement dans ses Œuvres, tome I, 1891, p. 3-51). Suivirent entre autres Frans van Schooten (Leyde, 1656) et Robert Simson (Glasgow, 1749).

Autres œuvres

Les Anciens mentionnent d’autres traités d’Apollonios qui ne sont pas parvenus jusqu’à nous :

  1. Περί τοῦ πυρίου, Sur les miroirs ardents. On pense que ce traité exploitait les propriétés focales des coniques.
  2. Περί τοῦ κοχλίου, Sur l’hélice circulaire (citée par Proclos de Lycie).
  3. Sur le rapport des volumes du dodécaèdre régulier et de l’icosaèdre inscrits dans une sphère.
  4. Ἡ καθόλου πραγματεία, traitait des principes généraux des mathématiques. Il comportait sans doute des remarques et des pistes d’amélioration pour les Éléments d’Euclide.
  5. Dans un traité intitulé Ὠκυτόκιον (Surgissement), Apollonios démontrait, aux dires d’Eutocios, comment encadrer la valeur du nombre π (pi) plus précisément qu’Archimède ne l’avait fait : ce dernier avait en effet proposé 3+1/7 comme valeur par excès (3,1428…) et 3-10/71 comme valeur par défaut (3,1408…).
  6. Le livre I de la Collection mathématique de Pappos (malheureusement mutilé) résume un ouvrage d’Apollonios proposant un système de numération et de multiplication adapté à l’écriture des très grands nombres mieux adapté au langage quotidien que celui proposé par Archimède dans son traité L’Arénaire.
  7. Un développement de la théorie des grandeurs irrationnelles du livre X des Éléments d’Euclide, allant des irrationnels binômes aux irrationnels multinômes, et des irrationnels ordonnés aux irrationnels non ordonnés (cf. les commentaires de Pappos au livre X des Éléments d’Euclide, transmis par l’arabe et publiés par Woepcke, 1856).

Notes et références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Apollonius of Perga » (voir la liste des auteurs).

  1. 1 2 3 Micheline Decorps-Foulquier, « Apollonius et le traité des Coniques », sur Images des Maths, .
  2. Vitruve (Arch., ix, 9 « Eudoxe l’astrologue (l’astronome) ou, selon quelques-uns, Apollonios (a inventé) l’araignée » cité par François Nau dans l’introduction à la traduction du Traité de l’astrolabe de Sévère Sebôkht.
  3. 1 2 La traduction retenue par Paul ver Eecke (Les Inclinaisons), calquée sur le latin, est fallacieuse[réf. nécessaire] comme on le voit à l’énoncé de cette catégorie de problèmes. Une traduction plus parlante serait, à l’exemple des Anglais (On Vergings), de rendre ce terme par Les Alignements. Plus récemment, les chercheurs, suivant l’exemple d’Abel Rey (Rey 1948), tendent à reprendre le terme grec (« problème des neuseis »).
  4. (en) Carl B. Boyer, A History of Mathematics, John Wiley & Sons, Inc., , 2e éd. (ISBN 978-0-471-54397-8), « Apollonius of Perga », p. 142 :
    « The Apollonian treatise On Determinate Section dealt with what might be called an analytic geometry of one dimension. It considered the following general problem, using the typical Greek algebraic analysis in geometric form: Given four points A, B, C, D on a straight line, determine a fifth point P on it such that the rectangle on AP and CP is in a given ratio to the rectangle on BP and DP. Here, too, the problem reduces easily to the solution of a quadratic; and, as in other cases, Apollonius treated the question exhaustively, including the limits of possibility and the number of solutions. »
    .
  5. La préface de l’édition Camerer des œuvres d’Apollonios (Apollonii Pergæi quæ supersunt, ac maxime Lemmata Pappi in hos Libras, cum Observationibus, &c, Gothæ, 1795, 1 vol. in-octavo) contient un historique détaillé de ce problème.
  6. Giulio Giorello (it), Réécrire Apollonius, « Les génies de la science », août-septembre 2007, p. 30-39.

Voir aussi

Article connexe

  • Théorème de Descartes

Bibliographie

  • (en) Henk Bos (de), Redefining geometrical exactness (2001) éd. Springer, coll. « Sources and studies in the Hist. of Math. and Phys. Sc. » (ISBN 0-387-95090-7).
  • Michel Chasles, Aperçu historique sur l'origine et le développement des méthodes en géométrie, 2e  éd., Paris, Gauthier-Villars, 1875 — Première parution en 1837, imprimerie Hayez, Bruxelles
  • Paul ver Eecke, La Collection mathématique de Pappus d’Alexandrie, Paris, Libr. A. Blanchard, (réimpr. 1982), « Introduction ».
  • Abel Rey, L’Apogée de la science technique grecque, vol. V : L’essor de la mathématique, Paris, Albin Michel, coll. « L’Évolution de l’Humanité / La science dans l’Antiquité », , 20×14 cm, 324 p., II, chap. I (« Les Neuseis et la division de l’angle »).

Liens externes

  • Voir aussi la Bibliographie des IREM (France).
  • Notices d’autorité : Fichier d’autorité international virtuel International Standard Name Identifier Bibliothèque nationale de France Système universitaire de documentation Bibliothèque du Congrès Gemeinsame Normdatei Institut central pour le registre unique Bibliothèque nationale de la Diète Bibliothèque nationale d'Espagne WorldCat
  • Micheline Decorps-Foulquier, « Apollonius et le traité des Coniques », sur Images des Maths, .
  • Portail des mathématiques
  • Portail de l’astronomie
  • Portail de la Grèce antique
This article is issued from Wikipédia - version of the Sunday, October 04, 2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.
Contents Listing Alphabetical by Author:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Unknown Other

Contents Listing Alphabetical by Title:
# A B C D E F G H I J K L M N O P Q R S T U V W Y Z Other

Medical Encyclopedia

Browse by first letter of topic:


A-Ag Ah-Ap Aq-Az B-Bk Bl-Bz C-Cg Ch-Co
Cp-Cz D-Di Dj-Dz E-Ep Eq-Ez F G
H-Hf Hg-Hz I-In Io-Iz J K L-Ln
Lo-Lz M-Mf Mg-Mz N O P-Pl Pm-Pz
Q R S-Sh Si-Sp Sq-Sz T-Tn To-Tz
U V W X Y Z 0-9

Biblioteca - SPANISH

Biblioteca Solidaria - SPANISH

Bugzilla

Ebooks Gratuits

Encyclopaedia Britannica 1911 - PDF

Project Gutenberg: DVD-ROM 2007

Project Gutenberg ENGLISH Selection

Project Gutenberg SPANISH Selection

Standard E-books

Wikipedia Articles Indexes

Wikipedia for Schools - ENGLISH

Wikipedia for Schools - FRENCH

Wikipedia for Schools - SPANISH

Wikipedia for Schools - PORTUGUESE

Wikipedia 2016 - FRENCH

Wikipedia HTML - CATALAN

Wikipedia Picture of the Year 2006

Wikipedia Picture of the Year 2007

Wikipedia Picture of the Year 2008

Wikipedia Picture of the Year 2009

Wikipedia Picture of the Year 2010

Wikipedia Picture of the Year 2011