Magnitude d'un séisme
La magnitude d'un tremblement de terre est une mesure de quantité de l'énergie libérée au foyer d'un séisme.
Plus le séisme a libéré d'énergie, plus la magnitude est élevée, il s'agit d'une échelle logarithmique : un accroissement de magnitude de 1 correspond à une multiplication par 30 de l'énergie et par 10 de l'amplitude du mouvement[1].
Les médias emploient souvent les termes d'échelle de Richter ou d'échelle ouverte de Richter, mais ils sont impropres : l'échelle de Richter, stricto sensu, est une échelle locale, surtout adaptée aux tremblements de terre californiens. Les magnitudes habituellement citées de nos jours sont en fait des magnitudes de moment (notées Mw)[2].
La magnitude et l'intensité (comme l'échelle de Mercalli) sont deux mesures différentes. L'intensité est une mesure des dommages causés par un tremblement de terre. Il existe des relations reliant l'intensité maximale ressentie et la magnitude mais elles sont très dépendantes du contexte géologique local. Ces relations servent en général à donner une magnitude aux tremblements de terre historiques.
Les différentes magnitudes
La mesure de la magnitude fut développée en 1935[3] par Charles Francis Richter pour classer les sismogrammes enregistrés localement en Californie. À l'origine cette échelle est la mesure de l'amplitude en micromètres sur un sismographe de type Wood-Anderson d'un tremblement de terre se situant à 100 km. Cette mesure n'est fiable qu'à très courte distance et est maintenant appelée magnitude locale.
L'année suivante, en 1936[4], Gutenberg et Richter proposent une magnitude qui se base sur l'amplitude des ondes de surface pour des distances télésismiques (distance supérieure à 30°[5]) et pour une période de 20 secondes (période naturelle des sismographes utilisés). Gutenberg en 1945[6] définit mieux cette mesure. Cette magnitude est encore utilisée aujourd'hui, surtout dans les premières estimations de la puissance du séisme. Son acronyme est MS.
Gutenberg et Richter proposent une nouvelle magnitude en 1956[7], cette fois basée sur une mesure effectuée sur les ondes de volume. Son acronyme est Mb (b pour body waves, ondes de volume en anglais).
Les magnitudes MS et Mb ont des limitations. Il ne s'agit pas d'une mesure directe de l'énergie libérée par le séisme. Un autre problème a été soulevé lors du grand tremblement de terre de 1960 au Chili. La durée de la source sismique était bien supérieure à 20 secondes, période à laquelle la magnitude de surface MS est calibrée. L'estimation de la magnitude du séisme, et des grands séismes en général est donc sous-estimée avec ce type de mesure. Ce phénomène est encore plus fort avec Mb pour laquelle la période de référence est de l'ordre de la seconde.
En 1977[8], Hiroo Kanamori introduit une nouvelle magnitude, l'échelle de magnitude du moment, calibrée sur le moment sismique. Bien que moins immédiate à estimer, cette magnitude est directement reliée à une quantité physique, elle-même, associée à l'énergie émise par le tremblement de terre. Cette magnitude dite de moment, a pour acronyme Mw et est la plus employée de nos jours.
Principe
La magnitude dite de Richter se base sur la mesure de l'amplitude maximale des ondes sismiques sur un sismogramme. La magnitude est définie comme le logarithme décimal de cette valeur. Cette définition très générale montre bien le caractère empirique de cette mesure qui dépend d'une part du type de sismomètre et d'autre part du type d'élaboration graphique utilisée pour la réalisation du sismogramme sur lequel se fait la mesure. Cette dernière est aussi très variable d'une station sismique à l'autre car la radiation sismique d'un séisme n'est pas homogène (voir mécanisme au foyer).
La définition originale donnée par Richter en 1935, appelée désormais magnitude locale ou , est une échelle logarithmique simple de la forme : où représente l'amplitude maximale mesurée sur le sismogramme, est une amplitude de référence correspondant à un séisme de magnitude 0 à 100 km, est la distance épicentrale (km) et est une constante d’étalonnage. Outre l'inhomogénéité de cette équation, marquant encore plus son caractère empirique, les constantes d’étalonnage ( et ) rendent cette définition valable seulement localement. Par exemple, dans la définition originale où l’étalonnage est effectué sur des séismes modérés de la Californie du Sud enregistrés avec un sismographe de type Wood-Anderson, et .
Afin d'améliorer cette mesure en la rendant plus globale, une nouvelle magnitude appelée ou magnitude des ondes de surface, est introduite en 1936. Cette magnitude est basée sur la mesure de l'amplitude maximale des ondes de surface (en général l'onde de Rayleigh sur la composante verticale du sismomètre) à une période de 20 s. La formulation est presque identique à la précédente :
où est l'amplitude mesurée, est la distance épicentrale exprimée en degré, et sont des constantes d’étalonnage. Cette mesure est toujours utilisée aujourd'hui. Cependant, outre son caractère empirique et le problème de saturation (voir ci-dessous), elle a deux points faibles. Le premier est son inutilité pour les séismes profonds (profondeur supérieure à 100 km) qui ne génèrent pas d'ondes de surface. Le second problème vient du fait que les ondes de surface sont les derniers trains d'onde à arriver. Dans le cadre d'un réseau d'alerte, il est primordial de pouvoir estimer le plus rapidement possible la magnitude du séisme.
La magnitude des ondes de volume noté (b pour "body waves") est donc une mesure qui se fait sur le premier train d'onde P et permet une estimation rapide de l'importance du séisme. Sa formulation est dépendante de la période dominante du signal : où est l'amplitude maximale mesurée, est la distance épicentrale (toujours en degré) et est la profondeur hypocentrale. est une fonction d’étalonnage dépendant des deux précédents paramètres. En général la période dominante est autour d'une seconde, période minimum des ondes P pour des distances télésismiques (). Le problème de cette mesure est la saturation rapide avec la magnitude.
D'autres magnitudes sont employées, surtout à l'échelle locale ou régionale. La magnitude de durée est souvent utilisée pour la micro sismicité et s'obtient comme son nom l'indique en mesurant la durée en seconde du signal sur le sismogramme. Une littérature abondante existe sur les régressions entre ces différentes mesures afin d'essayer de créer des relations de passage de l'une à l'autre. Ceci est toujours un exercice difficile. La disparité de ces mesures, qu'elle soit due au type d'onde, au type de capteur et à sa fréquence propre, à la distance, au type de magnitude utilisé, explique assez facilement la grande variabilité de la mesure de la magnitude d'un séisme dans les heures qui suivent son occurrence.
Pour compléter ce panorama, il est essentiel d'ajouter que la plupart des mesures de magnitude, une fois que s'est écoulé un certain temps après le séisme, ne correspondent pas à ce qui est décrit précédemment. L'étude du séisme va passer par une inversion des sismogrammes afin de retrouver conjointement sa localisation, son mécanisme au foyer et son moment sismique. De ce dernier, il est déduit une magnitude appelée magnitude de moment ou . Il s'agit de la magnitude la plus utilisée aujourd'hui.
Saturation de la magnitude
Le principal problème des magnitudes MS et mb est celui de la saturation. Ce phénomène est associé à la période à laquelle s'effectue la mesure. Il est impératif que cette mesure soit faite à une période qui soit supérieure à la durée d'émission de la source sismique. Or pour les grands séismes, ce temps peut être très long. Le cas extrême est celui du tremblement de terre de Sumatra de 2004 où l'émission de la source a duré au moins 600 secondes.
Si on considère :
- la relation simplifiée du moment sismique M0 avec la longueur de la faille L en kilomètres : M0 = 2,5×1015 L3
- une vitesse de rupture sur la faille de l'ordre de 3 km•s-1
- la relation entre moment et magnitude (voir moment sismique)
alors une durée d'émission de 1 s correspond à une magnitude 4,6 et une durée d'émission de 20 s correspond à une magnitude 7,2. Donc toute mesure de magnitude avec mb (mesurée sur les ondes P) commence à être sous-estimée au-dessus d'une magnitude 4,6 et il en va de même pour MS pour des séismes de magnitude supérieure à 7,2.
Ce problème de saturation a été mis en évidence durant l'estimation de la magnitude du tremblement de terre du Chili de 1960, magnitude dépassant 9,0. La magnitude de moment a donc été créée pour pallier cette difficulté. Cependant, l'estimation des très grandes magnitudes pose un problème. Le séisme de Sumatra de 2004 a mis aussi en difficulté les méthodes qui calculent le moment sismique et donc par conséquent la magnitude. La durée de la source très longue oblige à regarder des signaux à très basses fréquences. Une estimation de la magnitude a été donc faite à partir du mode propre le plus grave de la terre (0S2 - période de 53,9 min)[9]. Cette estimation (moment sismique de 6,5×1022 N•m correspondant à une magnitude de 9,15) a une incertitude d'un facteur 2, due principalement à la complexité et à la dimension de la source sismique.
Échelle de Richter
L'échelle étant le logarithme d'une amplitude, elle est ouverte et sans limite supérieure. Dans la pratique, les séismes de magnitude 9,0 sont exceptionnels et les effets des magnitudes supérieures ne sont plus décrits séparément. Le séisme le plus puissant mesuré, atteignant la valeur de 9,5, fut celui de 1960 au Chili.
Description | Magnitude | Effets | Fréquence |
---|---|---|---|
Micro | moins de 1,9 | Micro tremblement de terre, non ressenti. | 8 000 par jour |
Très mineur | 2,0 à 2,9 | Généralement non ressenti mais détecté/enregistré. | 1 000 par jour |
Mineur | 3,0 à 3,9 | Souvent ressenti sans causer de dommages. | 50 000 par an |
Léger | 4,0 à 4,9 | Secousses notables d'objets à l'intérieur des maisons, bruits d'entrechoquement. Les dommages restent très légers. | 6 000 par an |
Modéré | 5,0 à 5,9 | Peut causer des dommages significatifs à des édifices mal conçus dans des zones restreintes. Pas de dommages aux édifices bien construits. | 800 par an |
Fort | 6,0 à 6,9 | Peut provoquer des dommages sérieux sur plusieurs dizaines de kilomètres. Seuls les édifices adaptés résistent près du centre. | 120 par an |
Très fort | 7,0 à 7,9 | Peut provoquer des dommages sévères dans de vastes zones ; tous les édifices sont touchés près du centre. | 18 par an |
Majeur | 8,0 à 8,9 | Peut causer des dommages très sévères dans des zones à des centaines de kilomètres à la ronde. Dommages majeurs sur tous les édifices, y compris à des dizaines de kilomètres du centre. | 1 par an |
Dévastateur | 9,0 et plus | Dévaste des zones sur des centaines de kilomètres à la ronde. Dommages sur plus de 1 000 kilomètres à la ronde. | 1 à 5 par siècle |
Pour un site donné, la distribution des séismes suit une loi de Gutenberg-Richter.
Notes et références
- ↑ Explications sur le site de l'EOST
- ↑ USGS Earthquake Magnitude Policy (implemented on January 18, 2002) USGS Earthquake Magnitude Policy (implemented on January 18, 2002)
- ↑ (en) Richter C. F. (1935). An instrumental earthquake magnitude scale, Bulletin of the Seismological Society of America, 25, pages 1—32.
- ↑ (en) Gutenberg B. and C. F. Richter (1936). Magnitude and energy of earthquakes, Science, 83, pages 183—185.
- ↑ En sismologie, les distances à l'échelle de la terre se mesurent en utilisant l'angle de l'arc. La mesure est donc exprimée en degrés, un degré correspondant à (environ) 111 km.
- ↑ (en) Gutenberg B. (1945). Amplitudes of surface waves and magnitudes of shallow earthquakes, Bulletin of the Seismological Society of America, 35, pages 3—12.
- ↑ (en) Gutenberg B. and C. F. Richter (1956). Earthquake magnitude, intensity, energy and acceleration, Bulletin of the Seismological Society of America, 46, pages 105—145.
- ↑ (en) Kanamori H. (1977). The energy release in great earthquakes, Journal of Geophysical Research, 82, 2981—2987.
- ↑ Park J., Song T.R.A., Tromp J., Okal E., Stein S., Roult G., Clévédé É., Laske G., Kanamori H., Davis P., Berger J., Braitenberg C., Van Camp M., Lei X., Sun H., Xu H. et S. Rosat (2005). Earth's free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake, Science, 308, p. 1139-1144
Articles connexes
- Séismes les plus puissants enregistrés depuis 1900
- Tsunami
- Échelle Rossi-Forel
- Échelle de Mercalli
- Échelle Medvedev-Sponheuer-Karnik
- Échelle de Shindo
- Loi de Gutenberg-Richter
- Échelle de magnitude du moment
Liens externes
- Comprendre la magnitude d'un séisme Dossiers pédagogiques de l'École et Observatoire des Sciences de la Terre.
- Portail des sciences de la Terre et de l’Univers